

Who was that masked voter? The tally won't tell!

E-Vote-ID 2021 October 2021

Peter Y.A. Ryan,
Peter B. Roenne,
Dimiter Ostrev,
Philip B. Stark,
Najmeh Soroush,
Fatima -E. El Orche

[1] University of Luxembourg[2] University of California, Berkeley

Risk-Limiting Tallies & Risk-Limiting Audits:

[1] Benaloh, J., Jones, D.W., Lazarus, E., Lindeman, M., Stark, P.B.: SOBA: Secrecy preserving observable ballot-level audit. EVT/WOTE 11 (2011)

[2] Benaloh, J., Stark, P.B., Teague, V.: VAULT: Verifiable audits using limited transparency. E-Vote-ID 2019 p. 69 (2019)

[3] Jamroga, W., Roenne, P.B., Ryan, P.Y., Stark, P.B.: Risk-limiting tallies. In: International Joint Conference on Electronic Voting. pp. 183(199. Springer (2019)

Risk-Limiting Tallies & Risk-Limiting Audits:

Handling elections with complex ballots

RLT is arguably undemocratic.

Decrease the chance of a signature ballot to be visible Can be seen as more democratic than RLT Improve the receipt-freeness compared to RLT

1- Analyze (simultaneous) signature attacks, Using methods from coding theory

4- Define new quantitative measures for the level of coercion-resistance without plausible deniability

2- Propose various measures of verifiability and coercionresistance and investigate how several masking strategies perform against these measures

3- Define new quantitative measures for the level of votebuying-resistance

How many simultaneous signature attacks can a coercer launch?

How many simultaneous signature attacks can a coercer launch?

Hamming distance: $d_H(x, y) = \{i: x_i \neq y_i\}$ $q_{S,x_S}(s, \alpha) = p_S(s)\delta_{x_s,\alpha}$

$$d_{p_S}(x,y) = \frac{1}{2} \|q_{S,x_S} - q_{S,y_S}\|_1$$

There is a class of distributions p_S such that d_{p_S} does not even depend on all details of the set of positions where x, y differ, but only on the Hamming distance between x and y,

How many simultaneous signature attacks can a coercer launch?

Theorem

For every finite set \mathcal{V} , for every $k \in \mathbb{N}$, for every probability distribution p_S on subsets of $\{1, \ldots, k\}$ satisfying $\exists (r(0), \ldots, r(k)) \forall s, p_S(s) = \frac{r(|s|)}{\binom{k}{|s|}}$, for every $q \in [0, 1 - p_S(\emptyset)]$, let $r_{max}(\mathcal{V}, k, p_S, q)$ denote the size of the largest collection $\{x_1, \ldots, x_r\}$ with the property $\forall i \neq j, d_{p_S}(x_i, x_j) \geq q$. Then:

How to quantify the effect of a particular masking strategy on individual verifiability?

Quantify the effect of a particular masking strategy, (probability distribution p_S), on individual verifiability:

$$IV(p_S) = \inf_{x \neq y \in \mathcal{V}^k} d_{p_S}(x, y)$$

- 1. This quantity takes values between 0 and 1 $\,$
- 2. $IV(p_S) = 1$: The masking strategy leaves the individual verifiability of the underlying voting protocol invariant
- 3. $IV(p_5) = 0$: The masking strategy destroys any individual verifiability that was present in the underlying voting protocol.

Measured and Compared various definitions for different masked tally method and investigate how several sampling/masking strategies perform against these measures

RLT

1- δ -Privacy 2- δ - Coercion Resistance 3- No Deniability 4- Receipt- Freeness

Masked RLT

Result Only

δ –Privacy: Game based definition:

An election has δ -privacy if: $Advantage(\mathcal{O}) = |\Pr[\mathcal{O} \mapsto 0|b = 0] - \Pr[\mathcal{O} \mapsto 0|b = 1]| \leq \delta$

δ –Privacy in Masked RLT: (m out of k)

 v_0^O : the most unlikely ballot

 v_1^O : the most likely ballot

$$N_{v^*-collision} = |\{v : Masked^{(m,k)}(v) = Masked^{(m,k)}(v^*)\}|$$

$$p_{v_0-collision} = 1/\binom{k}{m} \cdot \sum_{1 \le i_1 < i_2 < \ldots < i_m \le k} p_{i_1} \ldots p_{i_m}$$

Plausible deniability & Vote-buying resistance

Plausible deniability & Vote-buying resistance

An Example:

 $x = (x_1, x_2, x_3), x_i \in \{0, 1\}$

coercer : $x^* = (0, 0, 1)$

$$Pr[x_1=1]=Pr[x_2=1]=\frac{1}{2}, Pr[x_3=1]=0$$

voter : x = (1, 0, 0)

1. cast a vote (1,0,0) without the 0 probability signature part ; no deniability

- m = 1 this happens with $p = (2/3)^{n_h+1}$
- m = 2 with $p = (11/12)^{n_h}$
- both are small if we have many voters
- 2. casting a vote (1, 0, 1) with the signature part.
 - m = 1 with probability $1/3(2/3)^{n_h}$
 - m = 2 with probability $1/3 + 1/3(11/12)^{n_h}$

Thus for m = 1 strategy 2) is always better, but for m = 2 strategy 1) is better when we have more than 13 voters. In some cases the voter strategy thus depends on m, which might not be know beforehand

Conclusion

Future Work

Define the level of plausibility for new RLT which can guarantee that the voter always has a certain level of coercion-resistance

From Game Theory Perspective!

Finding Optimal Strategy When the voter has a relaxed goal allowing to cast a signature part or not!

What is the optimal strategy a voter can choose to satisfy the two followings:

- Achieve a high level plausible deniability
- Casting a ballot close to of her own choice

Thanks for listening!