
1

Chapter 1

A Brief Survey on Zero-Knowledge Proof
Systems

“ The purpose of life is to
conjecture and prove”

Paul Erdos

If you have heard the story of Alibaba and the forty Baghdad thieves, you
may be aware that there was a cave and a treasure. And the cave’s door was
sealed with a large stone, and the only way to enter was to know the secret
phrase “Open Sesame!”

And Alibaba was aware of the word. That is why the thief master ordered him
to reveal the word! A tricky situation! Indeed, it did not seem wise for Alibaba
to reveal the word because it is most likely the thieves would kill him after
that. But on the other hand, if he did not reveal the word, they might have
believed he did not know it in the first place, and he would be killed again.

So what could he do not to die!?

We have heard more tales of Alibaba after his adventures with the forty
thieves of Baghdad, so we are guessing he went with the third solution. He
had convinced them that he was aware of the “Open Sesame!” without
telling the “Open Sesame!” However, how did he accomplish this?

We believe he was clever enough to use a “Zero-Knowledge proof System”.
A beautiful concept that conceals a contradiction at its core that interwoven
the notions of clarity and mystery!

2 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

A Zero-Knowledge proof system is one of the fascinating tools in cryptography. However,
there is a contradiction hidden within the concept of Zero-Knowledge; while proof should be
convincing, it must yield no knowledge beyond the validity of the statement being proven. In
other words, obtaining Zero-Knowledge proof that a statement is true is equivalent to being told
by a trusted party that the statement is true.

Zero-Knowledge proof is introduced in the seminal work of Goldwasser, Micali, and Rack-
off [34], and became one of the essential underlying primitives in cryptography. According to
Goldreich, Micali, and Wigderson [32], the Zero-Knowledge proof is an innovative technique to
force involved parties in a protocol to adhere to it while assuring that no secret information is
leaked.

Zero-Knowledge is one of the essential ingredients we employ towards having verifiable, se-
cure computations. This section, will gather basic terminology and background knowledge we
use in our research.

1.1 Zero-Knowledge proof Systems

Recall the definition of an Interactive proof system in which two parties, the prover in charge of
the algorithmProve and the verifier in charge of the algorithm,Verify, interact with each other on
some common input (x,L). Prover within an n-round interaction, tries to convince the verifier
that x ∈ L . We motivate a Zero-Knowledge system as an interactive proof system by which
the verifier gains “no knowledge” beyond the statement’s validity. Before going to the formal
definition, it is necessary to clarify the meaning of “gaining no knowledge”.

Information versus Knowledge. To begin, we want to emphasize that while knowledge (as stated
below) and information (from an information theory perspective) are often used interchange-
ably, we distinguish between the two. Then to better understanding the concept, we will look
into interactive Zero-Knowledge proof systems for language L1 and L2 (See ??).

Consider the first scenario for language, L1. When Bob asks Alice if graph G is Eulerian or
not, whatever Alice tells Bob about the Eulerian path, Bob could have easily obtained it by run-
ning some linear time algorithm. Therefore, here we say Bob does not gain any knowledge in this
interaction. On the other hand, in the interactive game for language L2, Hamiltonian graph, if
Alice proves to Bob that G has a Hamiltonian cycle, that would be the knowledge that Bob gains
in the game. That is because Bob does not have an efficient algorithm to recognize the “Hamil-
tonian Graph” by himself. In fact, Bob gains knowledge only if he receives some outcome from
the interaction with Alice that is infeasible for him to compute. To summarise according to [27],
knowledge is tied to computational difficulty; something is knowledge if it can be computed by
an efficient algorithm given limitless processing resources, whereas information is not.

Based on the above discussion, informally, we can define Zero-Knowledge property as fol-
low: We say an interactive proof system has a Zero-Knowledge property if what can be computed
by an arbitrary feasible adversary (e.g., a verifier) from the interactive game on input x can be
computed by an arbitrary feasible algorithm that is only given the input x.

Definition 1. [Interactive Zero-Knowledge Proof System]An n-round interactive Zero-Knowledge
proof system, for the language L is a protocol between prover (Prove) and a PPT verifier (Verify)
with the following properties:

• Completeness: For very x ∈ L , the verifier always outputs 1 (accept the proof) after inter-
acting with the prover:

∀x ∈L : Pr
[

[Verify⇌Prove(x)] → 1
]
= 1

1.1. Zero-Knowledge proof Systems 3

• Soundness: For any x ̸∈ L , and any potential cheater prover, the verifier output 0 (reject
the proof) with overwhelming probability:

∀x ∉L : Pr
[

[Verify⇌Prove∗(x)] → 1
]
= negl(|x|)

• Zero-Knowledge: For any x ∈L there exist a PPT simulator algorithm, Sim, such that the
following two distributions are identical:{

V i ew
[
VerifyProve

]
(x)

}
x∈L

≡
{
〈Sim〉(x)

}
x∈L

Additional Note. According to the above definition, the zero-knowledge property requires the
existence of an algorithm simulating the view of any verifier. Honest-verifier zero-knowledge
proof system is a weaker concept that only requires the existence of a simulator for a single
verifier, which is the honest verifier specified in the protocol specification.

Additional Note. To evaluate the robustness of the Zero-Knowledge proof system’s definition,
that is, to determine if it is too weak or too strong, we first note that every programming language
has a trivial proof. On the other hand, triple theorems demonstrate why each property in the zk
definition is required:

Theorem 1.1.1 ([27]). Suppose that L has a unidirectional Zero-Knowledge proof system, then
L ∈BPP.

Theorem 1.1.2 ([27]). Suppose that L has a Zero-Knowledge proof system in which the verifier
program is deterministic, then L ∈BPP.

Theorem 1.1.3 ([27]). Suppose that L has an auxiliary-input Zero-Knowledge proof system in
which the prover program is deterministic, then L ∈BPP.

Negative results. To analyze the upper bound for IP we first consider another type of IP the so-
called Arthur-Miller game, which is a simplified version of a 3-round interactive proof system
with the following steps:

1. The verifier sends a random string to the prover.

2. The prover responds with some string.

3. Based on a deterministic computation, the verifier on common inputs and two strings
deterministically accept or reject the proof .

By AM we refer to the class of language L that can be recognized by an Arthur-miller game.It is
proved that if an arbitrary language L ∈ coNP has an Arture-Miller proof system (coNP ⊂ AM),
then it would be unlikely that the polynomial-time hierarchy would collapse. Hence with the
help of the following theorem we can define an upper bound for the class ZKP.

Additional Note. It is believed that coNP in not contained in AM (NP is not contained in coAM).
In fact if coNP ⊆ AM then polynomial-time hierarchy would collapse which is unlikely. On the
other hand we have the following theorem:

Theorem 1.1.4 ([27]). If there exists a statistical (almost-perfect) Zero-Knowledge proof system for
a language L , then L ∈ coAM. In fact L ∈ coAM∪AM

4 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

Therefore, we conclude that if some NP-complete language L ∗ has a statistical Zero-Knowledge
proof system, then it implies every language in NP has the statistical Zero-Knowledge proof sys-
tem:

∃L complete ∈ SZK
L≺L complete

=========⇒(∀L ∈ NP : L ∈ SZK)

=⇒∀L ∈ NP : L ∈ coAM

=⇒ NP ⊂ coAM

The above argument shows that there exists some language that they do not possess perfect
Zero-Knowledge proof system.

1.2 Zero-Knowledge Proof System for NP-language

We now need to consider the following key question:

Do Zero-Knowledge proof systems exist? Additionally, assuming this is the
case, for which languages may we have a zero proof system?

The brief answer is “yes” to the first question. Furthermore, it is clear from the definitions of
the complexity classes P and BPP that we have a trivial Zero-Knowledge proof system for each
language in these classes. Because for the languages in BPP class, any PPT verifier can recognize
the language by itself. Thus, the interesting question is:

For which languages is a non-trivial zero proof system possible?

Intensive and fascinating research has been conducted to answer this question positively,
assuming that a one-way function does exist.

On the other hand, it is shown in [51] that unless very weak one-way functions exist, Zero-
Knowledge proofs can be given only for languages in BPP, which establish the necessity of the
one-way function for non-trivial ZK.

To demonstrate that ZK exists for all NP-languages, the authors in [31] construct a ZK for
some NP-complete language (such as, Graph coloring or Hamiltonian Graph languages) and
then conclude that ZK exists for all NP-languages using the Karp reduction. Here is a brief sum-
mary of the proof:

Theorem 1.2.1. [27] The protocol demonstrated in Figure 1 is a Zero-Knowledge proof system,
assuming the hiding and binding property of the commitment scheme.

Consider that, there is a reduction to 3-colouring language, by applying the Karp reduction,
we have the following theorem:

Theorem 1.2.2. If one-way functions exist, then every NP-language has a zero-knowledge inter-
active proof system.

1.3 Zero-Knowledge Proof Systems; Variants

Modifying the requirement of a Zero-Knowledge proof system yields new variations of the sys-
tem.

1.3. Zero-Knowledge Proof Systems; Variants 5

FIGURE 1.1: The Zero-Knowledge proof system for Graph 3-Colouring [27]

• Setting: G = (G ,V ,E ,n) : V = {1, . . . ,n} ,E = {
(i , j) : vertix i connect to j

}
Rg = {

(x, w) : x =G, w =φ : V 7→ {
blue,red,green

}
(i , j) ∈ E =⇒ φ(i) ̸=φ(j)

• Inputs: Prover x, w , Verifier: x

Prover commitment:

1. Pick a random permutation σ over
{
blue,red,green

}
2. For i = 1, . . .n commitment to the value σ(φ(i))

3. Compute Com=Com(σ(φ(i)))

Prover
Com−−−→ Verifier

Verifier challenge

Pick e = (i , j)
$←− E

Verifier
e−→ Prover

Prover respond:

Decommit to i and j by sending σ(φ(i)),σ(φ(j))

Prover
z=(σ(φ(i)),σ(φ(j)))−−−−−−−−−−−−−→ Verifier

• Verification: Verify(x,Com,e, z) accepts if and only if σ(φ(i)) ̸=σ(φ(j))

1.3.1 Simulator with Auxiliary Input

In the original definition, the simulator does not take any auxiliary input [34]. In contrast, in the
revisited definition [33], they relaxed the definition for a Zero-Knowledge property by consider-
ing a simulator with auxiliary input, Sim(x,AuxInput), that has an indistinguishable description
from the actual protocol:

Zero-Knowledge property. For any x ∈L , there exists a PPT algorithm; Sim called a simulator,
such that the following two distributions are identical:{

V i ew
[
Verify⇌Prove](x)

}
x∈L

≡ {〈Sim〉(x,AuxInput)
}

x∈L

This relaxation of the simulator is widely used, and a lot of the literature uses the revisited
definition to introduce the Zero-Knowledge proof system. Practically all known Zero-Knowledge
proofs are auxiliary-input Zero-Knowledge proofs. (Some examples of the original version can
be found in [29] and some with a non-black-box simulator [1])

1.3.2 Perfect, Statistical, Computational ZK

Recall that three variants of indistinguishability; Perfect, statistical and computational indistin-
guishability(see ??). Each indistinguishable interpretation provides a different form of Zero-
Knowledge that has been widely investigated in the literature. [30]

6 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

• Perfect Zero-Knowledge (PZK): It requires that the following distributions to be identical:{
V i ew

[
Verify⇌Prove](x)

}
x∈L

≡
{
〈Sim〉(x,AuxInput)

}
x∈L

• Statistical Zero-Knowledge, almost-perfect (SZK): It requires the statistical distance of the
following distributions to be negligible:

{〈Prove,Verify〉(x)
}

x∈L
static= {〈Sim〉(x,AuxInput)

}
x∈L

• Computational Zero-Knowledge (CZK): It requires that the two probability ensemble to be
indistinguishable by any PPT adversary:∣∣∣Pr

[
A(

{〈P ,V 〉(1ℓ)
}
) 7→ 1

]
−Pr

[
A(

{〈Sim〉(1ℓ, x,AuxInput)
}
) 7→ 1

]∣∣∣< negl(ℓ)

The class PZK, SZK and CZK are defined as all languages that have a perfect, statistical and
computational, respectively, Zero-Knowledge proof system with a polynomial number of rounds
(in its input length). Although CZK systems are the most liberal notion, they are very expressive
and offer significant Zero-Knowledge guarantees. It is proven that assuming one-way functions
exist, and every NP-language has a computational Zero-Knowledge proof system [31], followed
by a stronger result proven in [43, 7], which state that:

BPP ⊂ PZK⊆ SZK⊂ CZK= IP= PSPACE

1.3.3 Expected Polynomial-Time Simulators

Following [2] in the context of Zero-Knowledge, efficiency has also been interpreted to imply
polynomial on the average, i.e., the expected polynomial-time algorithm. Suppose we fix the
algorithm’s input and consider the algorithm’s running time as a random variable (dependent
on its coin tosses). In this case, we call the algorithm expected in polynomial time its random
variable the expectation is polynomial.

As mentioned in [28, 48], it is shown that this approach is quite problematic since it is not
model-independent and is not closed under algorithmic composition. However, suppose the
simulator runs in an expected polynomial (expectation is taken over the coin tosses of the sim-
ulator) rather than strict polynomial time. In this case, we have a new variant that we call Ex-
pected Polynomial-Time Simulators Zero-Knowledge proof system. This yields the following for-
mal definition:

Definition 2. If for a Zero-Knowledge proof system 〈Prove,Verify〉 the Zero-Knowledge property
holds with respect to an expected polynomial-time simulator. Namely, for every x ∈ L the random

variables
{
V i ew

[
Verify⇌Prove

]
(x)

}
x∈L

and
{
〈Sim〉(x,AuxInput)

}
x∈L

are identically distributed,

we call proof system, Zero-Knowledge with expected polynomial-time simulators.

1.3.4 Knowledge Tightness

Knowledge tightness is a security measure specific to the Zero-Knowledge property, and intu-
itively, it measures the “real security” of the proof system. In other words, it quantifies how much
harder the verifier must work while not interacting with the prover to compute anything that it
can compute after interacting with the prover. Thus, knowledge tightness is the ratio between
the simulator’s running time and the verifier’s running time in the real interaction simulated by
the simulator.

1.4. Proof of Knowledge 7

Definition 3 (Knowledge Tightness [27]). Let t : N ← N be a function. We say that a Zero-
Knowledge proof for language L has knowledge tightness if there exists a polynomial poly() such
that for every probabilistic polynomial-time verifier there exists a simulator Sim such that for all
sufficiently long x ∈L we have:

tSim(x)−poly(|x|)
tVerify(x)

≤ t (|x|),

where tSim(x) denotes the expected running time of the simulator on input x and tVerify(x)

denotes the running time of the verifier on input x.

Notably, the Zero-Knowledge property does not guarantee polynomial knowledge tightness,
even though all known Zero-Knowledge proofs and, more broadly, all Zero-Knowledge proper-
ties using a single simulator with black-box access to verifier have polynomial knowledge tight-
ness [27].

1.3.5 Arguments; Computationally Sound ZK

In the interactive proof system, we relax the soundness property in the following way: rather
than requiring that it is impossible to fool the verifier into accepting false statements, we require
that it be infeasible. This property is referred to as computational soundness, and the proof
system that possesses it is referred to as an argument proof system (or sound proof system).
Compared to the proof system, the arguments proof system has several theoretical and practi-
cal advantages. Theoretically, it is demonstrated that Perfect Zero-Knowledge computationally
sound proof systems can be constructed for all NP-languages under some reasonable assump-
tion. Additionally, computationally sound proof systems are significantly more efficient than
conventional proof systems in practice.

Definition 4. An interactive system 〈Prove,Verify〉 is called a computationally sound proof system
or an argument for a language L if both prover and verifier are polynomial-time with auxiliary
input with the following property:

1. Completeness: ∀x ∈L ∃w ∈ {0,1}∗s.t .∀z ∈ {0,1}∗ :

Pr
[〈Prove(w),Verify(z)〉(x) = 1

]= 1

2. Computational Soundness: For every polynomial-time interactive machine B and all suf-
ficiently long x ∉L and every y and z:

Pr
[〈Prove(y),Verify(z)〉(x) = 1

]≤ 1

3

3. Zero-Knowledge: Same as definition 1.

1.4 Proof of Knowledge

We distinguish two languages, L1 and L2 for the cyclic group G = 〈g 〉 in which the discrete
logarithm problem is hard:

Lg : Rg = {
(x, w) : x = (G, g ,h),h = g w}

Lddh : Rddh = {
(x, w) : x = (

(g ,h), (u, v)
)
,u = g w , v = hw} (1.1)

8 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

We say Lg is a trivial language. However, for every element h ∈ G, a w ∈ Zp such that h = g w

exists due to the cyclic nature of G. Therefore, each random statement h is considered a valid
statement with Rg . In other words, the proof, π does not establish the validity (which is self-
evident); rather, it establishes the asserting the knowledge of some witness, not merely its exis-
tence. On the other hand, since NOT every tuple (u, v) is a valid statement in language Lddh, a
prover can construct proof even without knowing the precise witness. The idea of PoK distin-
guishes two scenarios: in the first, the prover is aware of the validity but not necessarily of the
witness, whereas in the second, the proof establishes that the prover is aware of the witness.

In a formal framework, we capture the concept of proof of knowledge by using an efficient
algorithm that uses the proof system as a black-box and outputs a valid witness, which we
define with the help of the concept message-specification functions. Furthermore, the next-
message function captures the fact that the extractor has fine-grained oracle access to the prover
algorithm.

Definition 5 (Message-Specification Function[27]). Denote by Px,y ,r (m̄) the message sent by ma-
chine P on common input x, auxiliary input y and randomness r after receiving the message m it
is called the message specification function of machine P.

An oracle machine having access to the function Px,y ,r will present machine P ’s knowledge
on (x, y ,r). This oracle is referred to as an extractor, and its task is to finding w , a witness for x.
The extractor’s running-time must be inversely related to the corresponding acceptance proba-
bility.

Definition 6 (Zero-Knowledge proof of Knowledge). An (n-round) interactive Zero-Knowledge
proof system, for the language L is a Zero-Knowledge Proof of Knowledge (PoK) if it has a knowl-
edge extraction property (with knowledge error κ), detailed as follows:

Knowledge Extraction property: If there exists an efficient algorithm Extr and a polynomial
poly such that for any statement x, the oracle algorithm Extract⇌Provex,w ;r runs in expected poly-
nomial time and satisfies:

Pr
[

w∗ ←Extract(x)⇌Provex,w ;r | R(x, w∗) = 1
]
≥ 1−κ
poly(|x|)

Additional Note. The original definition for proof of knowledge considers the extractor with
polynomial-expected running time. We obtain the strong PoK property definition by replacing
the extractor that strictly runs polynomial.

Applications. PoK has a wide variety of applications in real-world protocols; for example, we can
use PoK to develop cryptographic primitives such as non-oblivious commitment schemes, non-
malleable CPA, and CCA-secure cryptosystem. Additionally, it has a wide range of applications
in mutual disclosure of same data and e-voting protocols.

We summarize the result for the PoK proof system in the following theorem:

Theorem 1.4.1 ([27]). Assuming the existence of (non-uniformly) One-Way functions, every NP-
relation has a Zero-Knowledge system for proofs of knowledge. Furthermore, inputs not in the
corresponding language are accepted by the verifier with exponentially vanishing probability.

1.5 Sigma Protocol

Sigma protocol is one of the most well-studied and popular Zero-Knowledge-proof systems,
which is a three-round interactive, honest-verifier Zero-Knowledge proof of knowledge for an
NP-relation R.

1.5. Sigma Protocol 9

Definition 7 (Sigma-Protocol [52]). A Sigma protocol for an NP-relation R is a public-coin, 2-
party interactive, honest-verifier and proof of knowledge that has the following three rounds:

1. On input (x, w) ∈ R, the prover sends the commitment of values r to the verifier:

2. On input x, the verifier sends a uniformly random challenge e to the prover.

3. The prover responds to the challenge e, by sending f (x, w ,r ,e) where f is some public func-
tion.

As a concrete example of the Sigma Protocol, we present the Schnorr Protocol.

The Schnorr Protocol. Consider the group G = 〈g 〉 with order p for some prime number p and
some random generator g such that the discrete logarithm is a hard problem in G ??. Then the
following is a sigma protocol:

FIGURE 1.2: The Schnorr Protocol

• Setting: G = (G , g , p) :G= 〈g 〉; |G| = p,

Rg = {
(x, w) : x = (G, g ,h),h = g w

}
• Inputs: Prove : x, w , Verify : x

• Protocol:

Prover Commitment:

Round 1: Pick random
$←−Zp

Compute Com= g random

Prover
Com−−−→ Verifier

Verifier Challenge

Round 2: Pick e
$←−Zp

Verifier
e−→ Prover

Prover Respond:

Round 3: Compute z = w ×e + random

Prover
z−→ Verifier

Verification Verify(x,Com,e, z) accepts if and only if g z = he ×Com

Theorem 1.5.1. [52] The Schnorr protocol is a Sigma-Protocol. Namely, it is perfectly complete,
knowledge-extractable, and honest-verifier Zero-Knowledge proof system.

It is worth mentioning that we can transform any sigma-protocol into full-fledged Zero-
Knowledge proofs of knowledge using some standard techniques [24], at the cost of an addi-
tional round of interaction (plus a small additive cost in the communication). Furthermore, we
may transfer any interactive sigma protocol to the non-interactive Zero-Knowledge proof sys-
tem using the Fiat-Shamir Paradigm (See 0.8.4).

Sigma Protocol for DDH-Relation. As a second example for Sigma-protocol, we demonstrate
the interactive proof system for relation RDD H . As we will see in the second part of our research,

10 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

FIGURE 1.3: Sigma Protocol for proof of knowledge of Paillier Plaintext

• Setting: GRSA = (n, p, q ,G , g),

Rg = {
(x, w) : x = (n, g ,ct), w = (m,r) ∈Zn ×Z∗

n : ct= g m × rn
}

• Inputs: Prover: (x, w), Verifier: (x)

• Protocol:

Prover Commitment:

Step 1: Pick (a,b)
$←−Zn ×Z∗

n

Compute Com= g a ×bn

Prover
Com−−−→ Verifier

Verifier Challenge

Step 2: Pick e
$←−Z

Verifier
e−→ Prover

Prover Respond:

Step 3: Compute z1 = e ×m +a mod n,

c = (e ·m +a − z1)n−1 mod n,

z2 = (b × re) · g t mod n2,

P π=(z1,z2)−−−−−−→ Verifier

Verification: Verify(x,Com,e,π) accepts if and only if g z1 · zn
2 = cte ·Com

we frequently rely on the non-interactive version of this proof to design a verifiable e-voting
protocol.

Sigma Protocol for Proof of Knowledge of Paillier Plaintext. Since we use Paillier cryptosystem
and its proof of knowledge in our protocol ??, as a third example we present the Sigma Protocol
for proof of knowledge of Paillier plaintext.

1.6 Composing Zero-Knowledge Proof Systems

We now discuss Zero-Knowledge proof system composition, focusing on which properties of a
proof system are kept throughout the composition, and which do not necessarily remain intact.
By the composition of proof systems, we refer to the execution of many copies of the protocol,
with the prescribed (honest) parties executing each copy independently of the others. For ex-
ample, if a party is required to toss coins in a particular round, it will toss independent coins for
each duplicate. We consider (polynomially) many Zero-Knowledge proof systems composed in
parallel and sequential.

1.6.1 Sequential Composition

Sequential composition invokes a set of ZK proof systems multiple (polynomial) times, with each
invocation following the termination of the previous one. The interesting result, in this case, is
that the ZK proof system as defined originally (simulator without auxiliary input) is not closed

1.7. Witness Indistinguishable and Witness Hiding Proof System 11

under sequential composition [29]. Yet, the modified version (simulator with auxiliary inputs)
retains its Zero-Knowledgeproperty after sequential repetition. [33]

1.6.2 Parallel Composition

Parallel composition invokes a set of ZK proof systems multiple (polynomial) times simultane-
ously and proceeds at the same pace. There exist two negative results regarding the parallel
composition of Zero-Knowledge protocols. The first approach refutes the parallel conjecture of
the parallel-composition conjecture by constructing a counter-example but does not explicitly
mention the natural candidates. In contrast the second approach establishes that there is a class
of Zero-Knowledge proof systems whose members cannot be proved Zero-Knowledge in parallel
composition using a general paradigm (known by the name “black-box simulation”) [27].

The parallel composition conjecture can also be refuted for probabilistic polynomial-time
prover (with auxiliary inputs) and statistical Zero-Knowledge proof systems.

We briefly demonstrate an example that shows the parallel composition of two Zero-Knowledge,
where the proof system is not always a Zero-Knowledge proof system.

Example [20]. Consider the Zero-Knowledge system for discrete logarithm language in (1),ΠdLog =
〈Prove,Verify〉. we construct a new Zero-Knowledge proof system as follows:

1. On input (G, g ,h), Verifier∗ tries to guess w randomly. If Verifier∗ succeeds he sends 1;
otherwise sends 0.

2. If Verifier∗ sent 1, then it proves the knowledge of w using the protocolΠdLog. If the prover
is convinced by Verifier∗, the prover sends w to the verifier; otherwise, the prover sends
reject and terminates the protocol.

3. If Verifier∗ sent 0 in step 1, the prover proves the knowledge of w using ΠdLog.

FIGURE 1.4: A parallel composition of two Zero-Knowledge Protocol

Prover1(x, w) Verifier∗(x) Prover2(x, w)

0←−−−−−−−−−−−− 1−−−−−−−−−−−−→
Prove1 ⇌Verifier∗

πDlog−−−−−−−−−−−−→
πDlog

Verifier∗⇌Prove2

πDlog−−−−−−−−−−−−→
w←−−−−−−−−−−−−

w

The fact that all known formulations of (computational) Zero-Knowledge are not closed un-
der parallel composition motivates the introduction of weaker notions such as witness indistin-
guishability.

1.7 Witness Indistinguishable and Witness Hiding Proof System

Consider an interactive proof system with multiple witnesses for each statement. If the verifier
cannot determine which witness the prover employs to generate the proof, we say the system

12 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

has witness indistinguishability. Furthermore, the system is witness hiding; if the verifier cannot
generate any new witnesses (he was unaware of before the protocol began) after interacting with
the prover [20].

We formally define these two systems as follows where RL (x) denotes the set of witnesses
for the statement x.

1.7.1 Witness Indistinguishability

Definition 8 (Witness Indistinguishable Proof System). Consider an interactive proof system
Πwi = 〈Prove,Verify〉 for an NP-language L with relation RL . We say it is witness-indistinguishable
for RL iffor every PPT distinguisher D and all z ∈ {0,1}∗ it holds:∣∣∣ Pr

[
D

(
x, z,

{
V i ew

[
Verify(z)P(w1

x)](x)
}

x∈L ,z∈{0,1}∗
)= 1

]
−Pr

[
D

(
x, z,

{
V i ew

[
Verify(z)P (w2

x)](x)
}

x∈L ,z∈{0,1}∗
)= 1

] ∣∣∣
< negl(|x|)

A stronger notion for the WI proof system defines as follows:

Definition 9 (Strong Witness Indistinguishable[27]). Interactive system 〈Prove,Verify〉 is strongly
witness indistinguishable proof system for RL if for every two probability ensemble:{

X 1
n ,Y 1

n , Z 1
n

}
,
{

X 2
n ,Y 2

n , Z 2
n

}
such that

{
X b

n ,Y b
n , Z b

n

}
ranges over (RL × {0,1}∗)∩ ({0,1}n × {0,1}∗× {0,1}∗) ,the following holds:

If
{

X 1
n , Z 1

n

}
and

{
X 2

n , Z 2
n

}
are computationally indistinguishable, then so are{

V i ew
[
Verify(Z 1

n)
Prove(Y1

n)]
(X 1

n)
}

n∈N ,
{
V i ew

[
Verify(Z 2

n)
Prove(Y2

n)]
(X 2

n)
}

n∈N

Additional Note. According to [27] although it is proved that any auxiliary-input Zero-Knowledge
proof system, for an NP-language is strongly witness-indistinguishable, assuming that one-way
permutations exist, witness indistinguishability does not imply strong witness indistinguisha-
bility.

1.7.2 Witness Hiding

A proof system for an NP-language has the witness-hiding property if the verifier after interacting
with the prover cannot find a fresh witness for the statement [20, 15, 47, 42, 17].

It should be noted that the witness hiding property only makes sense if obtaining witnesses
from scratch is impossible. As every language has instances where witness retrieval is straight-
forward, we need to consider witness retrieval for specially selected difficult instances. As a re-
sult, to capture the above pointers, we consider the concept of “Distribution of Hard Instances”,
which means for the language L correspond to the relation RL , with the probability distribu-
tion

X = {
Xn : L ∩ {0,1}n}

,

the following holds true:
Pr[F (Xn , z) ∈ RL (Xn)] < negl(n)

Where F is a probabilistic polynomial-time (witness-finding) algorithm. Hence considering this
definition a Zero-Knowledge proof system has witness hiding property; the probability of finding
the witness for a verifier remains negligible after interacting with the prover.

1.8. Non-Interactive Zero Knowledge Proof Systems 13

Additional Note. Although in general WI does not implies witness hiding property, we have
the following result: Consider a WI proof system, 〈Prove,Verify〉 for relation R with a PPT prover
algorithm. We define the new relation as follow:

R2 := {
((x1, x2), w) : |x1| = |x2| , ∃i : (xi , w) ∈ RL

}
Then Πzk has witness hiding property for R2.

Additional Note.

1. A WI-proof system is called witness-independent if the above ensembles are identically
distributed.

2. If the prover can generate proof without considering the witness in any proof system, then
the proof system is witness indistinguishable. This shows that the Witness Indistinguisha-
bility property is practically defined for the bounded prover that takes the witness as its
private auxiliary input. However, for non-trivial language, a PPT prover cannot generate
valid proof without having the witness.

3. Any Zero-Knowledge proof system also has the Witness Indistinguishability property, while
the other Witness Indistinguishable property does not always imply the Zero-Knowledge
property.

4. Although the WI proof system guarantees a weaker security level, it has many applications
due to some of its properties. For example unlike the Zero-Knowledge proof systems, a WI
property is preserved in parallel compositions.

1.8 Non-Interactive Zero Knowledge Proof Systems

As stated in [6], the zero-knowledge proof system’s results are based on interactive protocols
that guarantee the highest levels of real-world security in an adversarial context without making
any trust assumptions. Hence, the approach is referred to as the plain model, and it provides
the strongest real-world security guarantees in an adversarial context. However, the ZK-Proof
system cannot be used in real-world protocols such as electronic voting or public key exchange
because of its interactive nature. Indeed, due to the large number of parties involved, even a
single interaction causes a high cost on these systems.

On the other hand, based on the impossibility result for the zero-knowledge proof system in
the plain model with a single round of interaction for non-trivial languages [33], we know that we
must either sacrifice some security property or replace it with a trusted assumption if we wish
to avoid using the interactive requirement. Given that security is a highly desirable property,
the first approach (giving up the security level) is not an option; thus, we constructed the non-
interactive zero-knowledge proof system by introducing a trusted assumption captured in two
different approaches: the Hidden-Bit model and the CRS-Model.

This section will present an overview of the background and the result of the non-interactive
zero-knwoledge proof system, which we refer to as NIZK.

1.8.1 NIZK in RHB Model

In the hidden-bits model of the NIZK proof system [19, 26], the prover is initially given a se-
quence of bits that are hidden from the verifier. The prover then chooses an arbitrary subset of
these bits to reveal to the verifier. Although the verifier never learns the unrevealed parts of the
string, the prover cannot alter the values in the string it is given. Formally assume that the prover
is given the string s of length n and sends to the verifier {si }i∈I where I ⊂ {1,2, . . . ,n} is the index
set.

14 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

Definition 10 (Non-Interactive Zero-Knowledge Proof System). A pair of probabilistic algo-
rithms Πnizk = 〈Prove,Verify〉 is called a non-interactive zero-knowledge proof system in RHB-
model (random hidden bit) for language L if Verify is a polynomial-time algorithm and the fol-
lowing conditions hold true:

• Completeness property: For very x ∈ L , the verifier always outputs 1 (accept the proof)
after interacting with the prover:

∀x ∈L : Pr
[
Verify(x, (I , sI),π) = 1 | s

$←− {0,1}poly, (π, I) ←Prove(s, x, w)
]
= 1

• Soundness property: For any x ̸∈ L , and any potential adversary A, the verifier output 0
(reject the proof) with overwhelming probability:

∀x∗ ∉L : Pr
[
Verify(x∗, (I , sI),π) = 1 | s

$←− {0,1}poly, (π, I) ←A(s, x)
]
< negl(ℓ)

• Zero-Knowledge property: For any x ∈L a PPT simulator algorithm, Sim exists, such that
the following two distributions are identical:{

(x, (I , sI),π)|s ← crsGen(1ℓ),π←Prove(s, x, w)
}

≈{
(x, (I , sI),π)|s $←− {0,1}poly,π← Sim(s, x)

} (1.2)

Additional Note. It is worth noting that the hidden-bits model is not intended to be realis-
tic; rather, it has intended to be conceptual. However, this model facilitates the existential and
constructive path toward a realistic, concrete model, the CRS-Model. To begin, it establishes
a simple abstraction for NIZK systems, which we know exist for NP-hard languages due to the
following theorem:

Theorem 1.8.1. [19] There exists a NIZK proof system in the hidden-bit model for any NP-language
(unconditionally). Furthermore, the protocol is statistical zero-knowledge and statistically sound.

1.8.2 NIZK in CRS Model

Ivan Damgård introduced the first approach to establishing a non-interactive Zero-Knowledge
proof system that achieves a sufficient level of security in [16]. In this model, we assume the
existence of an algorithm called CRS-generator that chooses a common-reference string in an
honest way (CRS). The prover and verifier are both given access to a common string that serves
as their input for generating and verifying the proof, respectively. Formally

Definition 11 (Interactive Zero-Knowledge Proof System). A pair of probabilistic algorithms
Πnizk = 〈Prove,Verify〉 is called a non-interactive zero-knowledge proof system in CRS-model (com-
mon random string) for language L if Verify is a polynomial-time algorithm and the following
conditions hold true:

• CRS-Generator: A PPT algorithm crsGen(1ℓ) exists that on input the security parameter,
generates a string crs :

crs← crsGen(1ℓ)

• Completeness property: For very x ∈ L , the verifier always outputs 1 (accept the proof)
after interacting with the prover:

∀x ∈L : Pr
[
Verify(x,crs,π) = 1 | crs← crsGen(1ℓ),π←Prove(crs, x, w)

]
= 1

1.8. Non-Interactive Zero Knowledge Proof Systems 15

• Soundness property: For any x ̸∈ L , and any potential adversary A, the verifier output 0
(reject the proof) with overwhelming probability:

∀x∗ ∉L : Pr
[
Verify(x∗,crs,π) = 1 | crs← crsGen(1ℓ),π←A(crs, x∗)

]
< negl(ℓ)

• Zero-Knowledge property: For any x ∈ L there exists a PPT simulator algorithm, Sim,
such that the following two distributions are identical:{

(x,crs,π)|crs← crsGen(1ℓ),π←Prove(crs, x, w)
}
ℓ

≈{
(x,crs,π)|crs← crsGen(1ℓ),π← Sim(crs, x)

}
ℓ

(1.3)

Additional Note. According to some definitions, the simulator is composed of two algorithms,
Sim = (Sim1,Sim2), the first of which generates a simulated CRS, crs∗. This provides the sim-
ulator with additional power, as the simulator may generate some trapdoor that helps in the
subsequent generation of a valid proof. In this case the equation 4 is replaced with:

{(x,crs,π)|crs← crsGen(1ℓ),π←Prove(crs, x, w)}ℓ

≈
{(x,crs,π)|crs∗ ← Sim1(1ℓ),π← Sim2(crs, x)}ℓ

(1.4)

Composable Zero-Knowledge: The composable zero-knowledge property was first introduced
in [37], strengthening the standard zero-knowledge definition in the following way. First, it re-
quires that an adversary cannot distinguish a real CRS from a simulated CRS. Second, it requires
that the adversary, even when access to the trapdoor, cannot distinguish real proofs on a simu-
lated CRS from simulated proofs. This robust security property ensures that the same common
reference string can be used for multiple proofs, which enhances the proof system’s composabil-
ity:

1. Reference String Indistinguishability: For all non-uniform polynomial-time adversaryA,
the following holds true:

Pr
[
A(crs) = 1 | crs← crsGen(1ℓ)

]
≈ Pr

[
A(crs∗) = 1 | (crs∗,τ) ← Sim1(1ℓ)

]
2. Simulation Indistinguishability: For all non-uniform polynomial-time adversary A the

following holds true:

Pr

A(π) = 1∧ (x, w) ∈ Rn |
(crs∗,τ) ← Sim1(1ℓ)
(x, w) ←A(crs∗,τ)
π←Prove(crs, x, w)


≈Pr

A(π) = 1∧ (x, w) ∈ Rn |
(crs∗,τ) ← Sim1(1ℓ)
(x, w) ←A(crs∗,τ)
π← Sim2(crs, x,τ)


(1.5)

Theorem 1.8.2. [19]Assuming the existence of trapdoor permutations and any NIZK proof system
in the hidden-bits model, we may construct a NIZK proof system in the common random string
model.

16 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

Adaptive versus non-Adaptive NIZK. We consider adaptive and non-adaptive versions of the
soundness property. Adaptive soundness allows x ∉ L to be adaptively chosen after the crs is
fixed, whereas non-adaptive soundness requires the adversary to choose the statement before
seeing the crs.

Non-Interactive sigma protocol in RO model for relation ROR−DDH is shown in Figure ??.

1.8.3 NIZK for NP-Language

Similarly to the ZK proof system, we can establish the existence of a NIZK in two steps for all
NP-languages:

First, we build a NIZK for an NP-complete language, and then we use the Karp reduction to
extend it to all NP-languages.

Feige, Lapidot and Shamir in [19], develop a NIZK proof system in the HBS model for Hamiltonian-
Graph language and then convert it to NIZK in the CRS model using a technique known as the
FLS technique. More recently, Groth, Ostrovsky, and Sahai [38] presented an efficient design for
Circuit-SAT based on a bilinear group that obtained perfect zero-knowledge.

This, together with other constructs in the literature, leads to the following theorem:

Theorem 1.8.3 ([27]). Assuming the existence of one-way permutations, each language in NP
class has a non-interactive proof system that is adaptively Zero-Knowledge proof system. Fur-
thermore, assuming the existence of families of trapdoor permutations, the prover strategy in such
a proof system can be implemented by a probabilistic polynomial-time machine that gets an NP-
witness as an auxiliary input.

1.8.4 Fiat-Shamir Heuristic

The Fiat–Shamir heuristic, introduced in [21], is a technique that transforms an interactive proof
system (such as sigma-protocol) into non-interactive zero-knowledge proofs with the help of
some secure hash function(See ??).

In general, this approach replaces the verifier’s challenge (See 0.5) value with the output of
some random oracle that depends on the prover commitment values. This results in reducing
the interaction rounds to a single round interaction between the prover and the verifier.

While the Fiat-Shamir approach provides an extremely efficient non-interactive ZK proof
system, the security property of NIZK is dependent on the hash function used. As a result, we
cannot always assume that the NIZK system is secure based on its security in the RO model [11].
We refer to [5], in which the authors demonstrate that some protocol instantiation in the random
oracle model may be proven secure, whereas some hash functions are insufficient as a replace-
ment for a random oracle. As such, this abstraction should be viewed as a heuristic indicator of
security.

For more details on Fiat-Shamir Heuristic approach we refer to [12].

1.8.5 Designated Verifier Zero-Knowledge Proof Systems

For many Zero-Knowledge proof systems, only the verifier designated by some secret input
(verification-key) must be convinced of the statement’s validity. In contrast to the Zero-Knowledge
proof system, the verifier does not need any extra inputs to run the verification algorithm. The
formal definition for non-interactive designated verifier (NIDV) proofs was first introduced by
Jakobsson et al. in [44] and have been used as confirmation and denial proofs for undeniable
signature schemes.

Definition 12 (Designated Verifier NIZK[46]). A designated verifier non-interactive Zero-Knowledge
proof system is a tuple of PPT algorithms Πdv−nizk = 〈Setup,Kgen,Prove,Verify〉 such that:

1.8. Non-Interactive Zero Knowledge Proof Systems 17

• Set up algorithm outputs a common reference string, crs and the public parameters pp,
which describe the language L .

• Key generator takes as input the public parameters and returns a key pair of public key and
the verification key, vk:

(pk,sk) ←Kgen(pp)

• Prover generates the proof, π on inputs (x, w) ∈ R, L and pk.

• Verifier on input the public key, pk, the verification key, vk, statement x and the proof π,
outputs reject or accept.

which satisfies the completeness, Zero-Knowledge, and soundness properties.

Additional Note. Definition 12 shows that the verification algorithm is the primary distinction
between a conventional and a designated verifier. In the latter system, the verification algorithm
requires additional input, namely the verification key. In contrast, the former allows any public
party to execute the verification algorithm using the system’s public parameters. Many proto-
cols, such as electronic voting schemes, use the designated-verifier proof system to demonstrate
the validity of computations to the individual voter. We stress that the difference between the
designated verifier and the ordinary Zero-Knowledge proof system comes from the verification
key

As an example, we present the following example from [13].

Example: A prover wishes to prove to a verifier that he knows a value w ∈Zn such that h = g w .
Let u ∈ Jn be an arbitrary generator of Jn . Let’s define R = un mod n2 key= (pk,vk) = (E = Re ,e).

Prover steps:
T ′ = (1+n)t Rr mod n2, X ′ = (1+n)x E−r mod n2 and then the verifier computes D = T e X

mod n2 and D ′ = T ′e · X ′ mod n2 and then checks that D ′ is the form (1+n)d mod n2. If so,
computes d mod n from D ′ and checks that D = g d the verifier accepts if and only if, both checks
succeeded.

1.8.5.1 Implicit Zero-Knowledge Proof Systems

Benhamoda et al.[8] introduced a new type of Zero-Knowledge proof, called implicit Zero-Knowledge
arguments and stands between two existing notions, interactive Zero-Knowledge proofs and
non-interactive Zero-Knowledge proofs.

The implicit Zero-Knowledge argument is an encapsulation mechanism that allows masking
a message to retrieve if and only if the statement is true. Additionally, iZK maintains the same
Zero-Knowledge properties as standard Zero-Knowledge arguments. The ability to unmask a
message only leaks the validity of the statement and nothing more.

iZk can be used in two-party computations to force parties to follow the protocol. iZK en-
sures the confidentiality of the parties’ inputs in a different method. However, it does not explic-
itly check that the opponent behaved honestly. Rather than that, it ensures that if this is not the
case, it will be impossible for the other party to recover any further protocol messages.

Definition 13 ([8]). The following polynomial-time algorithms define an ΠiZK:

• icrs ← iSetup(crs) generates the (normal) common reference string which implicitly con-
tains crs). The resulting CRS provides statistical soundness.

• (icrs∗, iτ) ← iTSetup(crs) generates the (trapdoor) common reference string icrs together with
a trapdoor iτ. The resulting CRS provides statistical Zero-Knowledge.

18 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

• (ipk, isk) ← iKG(icrs, x, iw) generates a pair of keys, associated with statement x ∈L and the
witness w.

• (ipk∗, itk) ← iTKG(iτ, x) generates a public and trapdoor key pair, associated with x.

• (ct,key) ← iEnc(icrs, ipk, x) outputs a ciphertext of a value key (an ephemeral key), for x.

• key← iDec(icrs, isk,ct) decrypts the ciphertext, and outputs the ephemeral key, key.

• key← iTDec(icrs, itk,ct) decrypts the ciphertext and outputs the ephemeral key, key.

Security Notion. Implicit ZK must have correctness, setup indistinguishability, soundness and
Zero-Knowledge properties, which are defined similarly to other variants of proof systems. Ad-
ditionally, it requires the Setup Indistinguishability that states that the two setup outputs should
be indistinguishable.{

icrs|icrs← iSetup(1ℓ,crs)
}
ℓ
≈

{
icrs∗|(icrs∗, iτ) ← iTSetup(1ℓ,crs)

}
ℓ

We will not provide the formal definition here; rather, we will refer to the original publica-
tion [8] for additional information.

1.8.6 Non-Algebraic Language; Rang-Proof and Proof of Shuffle

All of the ZK protocols we have discussed so far can be naturally expanded to prove a wide range
of claims, such as arbitrary algebraic relations between values. As we will see in the second
part, many of these proofs are used to demonstrate the well-formedness of some ciphertext or
commitment value. However, some languages are not classified as algebraic languages. For
example, we mention the range-proof, widely used in e-voting protocols.

A typical technique would be to commit to every single bit of the witness, then demonstrate
that each commitment value commits to either 0 or 1, and finally demonstrate that the relation
exists. This strategy, however, is relatively inefficient.

Several solutions have been proposed to address this issue, including garbled-circuit-based
Zero-Knowledge proofs for statements expressed by boolean circuits [22, 45, 14] and Zero-Knowledge
arguments with sub-linear communication based on generalised Pedersen commitments [36,
35].

Due to the extensive application of electronic voting protocols to range-proofs and proofs of
shuffle, we refer readers to the following papers for additional information [10, 49, 50, 4, 3, 41,
23]

1.9 Non-Interactive Witness Indistinguishable Proof Systems

The Groth-Sahai NIWI-proof system is, indeed, a turning point in the field of zero-knowledge
proof systems.

Since the advent of ZK proof systems, it has been shown that NIZK proofs exist for all NP-
languages. However, this fact was proven existentially and not in a constructive way. Precisely,
theorem 0.8.3 was proved in the following way. First, we develop a reduction from our language
to an NP-complete language (e.g., 3-SAT or Graph colouring problem) for which proof has al-
ready had a NIZK proof system. Then we transform back the proof from the complete language
to our language using the Karp reduction. Unfortunately, the system obtained in this way is an
inefficient, and it is computationally too expensive for real-world protocols and applications.

With the emergence of elliptic curves and bilinear maps in modern cryptography, consid-
erable effort has been spent developing ZK-proof systems over bilinear groups. This research’s

1.9. Non-Interactive Witness Indistinguishable Proof Systems 19

line has resulted in a fascinating and efficient NIZK proof system, beginning with Groth, Os-
trovsky, and Sahai’s seminal work [39] and continuing with Groth-Sahai proof techniques [40].
Groth and Sahai present a method based on a set of equations that identifies a broad class of
languages for which an efficient pairing-based NIZK could be constructed with security based
on the standard bilinear group assumption. The Groth-Sahai proof techniques, which was sub-
sequently updated in [25, 9], have a significant impact on practical applications, and it is one of
our primary tools for verifiable and secure computation.

This section formally defines a non-interactive witness indistinguishable proof system (NIWI
for short) and briefly reviews the Groth-Sahai proof techniques. Then we point out definitions,
notions and notations in this section are taken from [40].

1.9.1 NIWI; Formal Definitions

Notation We let R refer to efficiently computable ternary relation, which includes the member
of the form (gk, x, w) where gk is considered the setup group a.k.a. the public parameter, x is the
statement, and w is the witness. Compared to the binary relation, here we include the group
setting as a part of the triple, which shows the system’s flexibility. By L , we refer to the NP-
language consisting of the statements x for which witnesses w exist such that (gk, x, w) ∈ R.
Groth-Sahai setting relates gk to be the description of a bilinear group which implies L should
be corresponding to some bilinear group.

Definition 14 (NIWI-Proof System). The non-interactive witness indistinguishable proof system,
Πniwi = 〈Setup,Kgen,Prove,Verify〉 for the relation R is a tuple of four probabilistic polynomial-
time algorithms, which fulfils the perfect completeness, perfect soundness and composable witness
indistinguishability properties as detailed below:

• Set Up is a probabilistic algorithm that takes security parameters and generates a pair (gk,sk).
We refer to the first component, gk, as a public parameter. The Groth-Sahai setting repre-
sents the description of a pairing group setup, and the second component sk as the secret
parameter. It requires that both keys have a length polynomial in terms of the security pa-
rameter.

(gk,sk) ← Setup(1ℓ)

• Key Generation is a probabilistic algorithm that outputs the CRS on input, the public pa-
rameter and the secret key:

crs←Kgen(gk,sk)

• Prove is a probabilistic algorithm that on inputs gk,crs, x and w first checks whether (gk, x, w) ∈
R and if so outputs a proof π:

π←Prove(gk,crs, x, w)

• Verify is a deterministic algorithm that takes (gk,crs, x,π) and outputs accept if π is a valid
proof, namely that x ∈L , or reject if that is not the case:

Verify(gk,crs, x,π) = accept / reject

Security Requirements: A NIWI proof system is required to have the following properties:

1. Perfect Completeness: The verifier always accepts the proofs generated by the prover for
the valid statement.

Pr

Verify(gk,crs, x,π) = accept |
(gk,sk) ← Setup(1ℓ)
(crs) ←Kgen(gk,sk)

π←Prove(gk,crs, x, w)

= 1 (1.6)

20 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

2. Perfect Soundness: For all adversaries A and x ∉L the following holds:

Pr

Verify(gk,crs, x∗,π) = accept |
(gk,sk) ← Setup(1ℓ)
(crs) ←Kgen(gk,sk)
(x∗,π) ←A(gk,crs)

x∗ ∉L

= 0 (1.7)

If we consider the PPT adversary, we call the proof system with the computational sound-
ness or an argument 0.3.5.

3. Perfect Culpable Soundness: In the original paper [40] they consider the cases, that may
require soundness against the adversary who generates a valid proof for x∗ ∈Lguilt instead
of x∗ ∈ L̄ , where Lguilt may depend on gk and crs. Based on this modification, they pro-
vide an alternate definition called culpable soundness. Note that if we put Lguilt := L̄ , we
get the original soundness definition as above. Formally:

Pr

Verify(gk,crs, x∗,π) = accept |
(gk,sk) ← Setup(1ℓ)
(crs) ←Kgen(gk,sk)
(x∗,π) ←A(gk,crs)

x∗ ∉Lguilt

= 0 (1.8)

4. Indistinguishability: The standard definition of witness indistinguishability requires that
proofs computed on different witnesses for the same instance are computationally indis-
tinguishable. For composable witness indistinguishability we need to use the idea of a
simulated CRS to generates a simulated common reference string that is indistinguish-
able from a real one. Hence we first define the CRS indistinguishability.

i. CRS Indistinguishability requires that there exists a PPT simulator Sim such that the
advantage of any PPT adversary is negligible in the following experiment:

Advind−crsA (ℓ) =
∣∣∣Pr

[
A(crs,gk) = 0 | (gk,sk) ← Setup(1ℓ),crs←Kgen(gk,sk)

]
−

Pr
[
A(crs∗,gk) = 1 | (gk,sk) ← Setup(1ℓ),crs∗ ← Sim(gk,sk)

]∣∣∣
< negl(ℓ)

ii. Witness Indistinguishability states that, an adversary cannot distinguish between
the proof for w0 and the proof for w1 more than a random guess on a simulated CRS.
Formally the advantage of the adversary in the experiment ExpwiA (1ℓ) (See Figure 5) is
negligible.

5. Zero-Knowledge: This property requires the adversary not to distinguish between a real
and a simulated CRS. In addition, it involves the use of two simulators. One generates
the crs along with a trapdoor,τ, and the other generates a proof using the simulated CRS,
crs∗ such that the adversary cannot distinguish between the real proof and the simulated
proof.

1.10. Groth Sahai NIWI proof System 21

FIGURE 1.5: Witness Indistinguishability Experiment

Challenger Adversary

(gk,sk) ← Setup(1ℓ)

Cwi (g k,crs)−−−−−−−−−−→A

(x, w0, w1) ←A(gk,crs) :

(gk, x, w0), (gk, x, w1) ∈ R

Cwi (x,w0,w1)←−−−−−−−A

β
$←− {0,1}

π←Prove(gk,crs, x, wβ)

Cwi π−−−−−−−→A

β′ ←A(gk,crs,π)

Success probability: SuccwiA (1ℓ) = Pr
[
β=β′]

|Pr

[
(gk,sk) ← Setup(1ℓ); crs← Sim(gk,sk);
(x, w0, w1) ←A(gk,crs);π←Prove(gk,crs, x, w0)

: A(π) = 1 ∧ (gk, x, w0) ∈ R

]
−

Pr

[
(gk,sk) ← Setup(1ℓ); crs← Sim(gk,sk);
(x, w0, w1) ←A(gk,crs);π←Prove(gk,crs, x, w1)

: A(π) = 1 ∧ (gk, x, w1) ∈ R

]
| = 0.

and,

|Pr
[

(gk,sk) ← Setup(1ℓ)crs←Kgen(gk,sk) | A(gk,crs) = 1
]

Pr
[

(gk,sk) ← Setup(1ℓ); crs← Sim(gk,sk) | A(gk,crs) = 1
]

< negl(ℓ).

Moreover, for all non-uniform adversaries A, it holds that:∣∣∣Pr

[
(gk,sk) ← Setup(1ℓ); crs← Sim(gk,sk);
(x, w0, w1) ←A(gk,crs);π←Prove(gk,crs, x, w0)

| A(π) = 1 ∧ (gk, x, w0) ∈ R

]
−

Pr

[
(gk,sk) ← Setup(1ℓ); crs← Sim(gk,sk);
(x, w0, w1) ←A(gk,crs);π←Prove(gk,crs, x, w1) :

| A(π) = 1 ∧ (gk, x, w1) ∈ R

]∣∣∣= 0.

1.10 Groth Sahai NIWI proof System

Groth-Sahai scheme ΠGS is a NIWI-proof system under a trusted setup (i.e., in the CRS model)
for the satisfiability of four types of equations (Figure 7) over bilinear groups.

1.10.1 Groth-Sahai Technique; Overview

The GS proof system is developed using commitment schemes, group isomorphism that pre-
serves group actions, and a bilinear map. First we give an overview of the technique.

22 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

FIGURE 1.6: Expsim−zk
A (1ℓ)

Challenger Adversary

(gk,sk) ← Setup(1ℓ)

(crs,τ) ← Sim1(gk,sk)

Czk (g k,crs)−−−−−−−−−−→A

(x, w) ←A(gk,crs,τ)

(gk, x, w) ∈ R

C (x,w)←−−−−−−−−A

β
$←− {0,1}

If β= 1 :
(
π←Prove(gk,crs, x, w)

)
If β= 0 :

(
π← Sim2(gk,crs,τ)

)
Cwi π−−−−−−→A

β′ ←A(gk,crs,π)

Success probability: SucczkpA (1ℓ) = Pr
[
β=β′]

Assume that isomorphisms ιs and ρs exist between groupsAs and Bs :

s ∈ {1,2,T } : ιs :As 7→Bs , ρs : Bs 7→As

These maps are designed in such a way that they preserve both the group actions and the
bilinear map and have communicative property. Put simply; this means that as illustrated in
Figure 8, there are two ways to get to point aT = e(a1, a2) ∈ AT : a1 ∈ A1, a2 ∈ A2 : one through
groups A1 and A2 and evaluating the bilinear map over (a1, a2) the red path, and the other
through B1,B2 the green path.

Now in order to provide proof for (x, w) ∈ REq
GS where:

Eq : e(X ,β) ·e(α,Y) = tT , (1.9)

the prover first commits to the witness components Com1(X) ∈B1,Com2(Y) ∈B2, which techni-
cally means that we transfer the members ofA1,A2 to B1,B2, respectively.

The prover must demonstrate that the committed values (Com1,Com2) satisfy the equation
in the second step. This part can be proven using the commutative property. Because the verifier
only needs to perform some computations on the committed and constant values in groups B1,
B2, and BT to determine whether the target value bT is the image of the target value aT ∈AT .

1.10. Groth Sahai NIWI proof System 23

FIGURE 1.7: The Set of Equations over bilinear groups supported by Groth-Sahai
NIWI Proof System:

• Setting:
G = (

p,G1,G2,GT ,e :G1 ×G2 7→GT
)

: |G1| = |G2| = p

• Variables:

X⃗ = (X1, . . . ,Xm) ∈Gm
1 , Y⃗ = (Y1, . . . ,Yn) ∈Gn

2 ,

x⃗ = (x1, . . . , xm′) ∈Zm′
n , y⃗ = (y1, . . . , yn′) ∈Zn′

n

• Constants:

A⃗= (Ai) ∈G1 , B⃗ = (Bi) ∈G2 ,

Γ= {γi j }i , j ∈Zn , T1 ∈GT , tT ∈GT

• Set of equations: GSEq = {Eqpp,Eqms,Eqqe},

• Eqpp: Pairing product equation

n∏
i=1

e(Ai ,Yi) ·
m∏

i=1

m∏
j=1

e(Xi ,X j)λi j ·
m∏

i=1
e(Xi ,Bi) = tT = e(R,S)

(A⃗ · Y⃗)(X⃗ ·ΓY⃗)(X⃗ · B⃗) = tT = e(R,S)

• Eqms: Multi-scalar multiplication equation in G1 :

n′∑
i=1

yiAi +
m∑

i=1

n′∑
j=1

γi j y jXi +
m∑

i=1
biXi = T

(A⃗ · y⃗)+ (X⃗ .ΓY⃗)+ (X⃗ .⃗b) = T

• Eqqe: Quadratic equation in Zn :

n∑
i=1

ai yi)+
m′∑
i=1

n′∑
j=1

γi j xi y j +
m′∑
i=1

xi bi = t mod n

(a⃗ · y⃗)(⃗x ·Γy⃗)+ x⃗ · b⃗ = t mod n

• Πniwi−GS = 〈ProveGS,VerifyGS〉: Groth-Sahai NIWI Proof System for relation RGS

RGS = {(x, w) :

x =Eq ∈GSEq,

w = ({αi } :αi ∈ (G1 ∪G2,GT)

Eq[w] =Eq[{gi }] =True

}

• Notation: By Eq[w] =True we mean that w satisfies the equation. If we need to specify the set of
solution (witness) for a specific equation, Eq, we present it by REq

GS .

24 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

FIGURE 1.8: Commutative Diagram betweenA1,A2,AT and B1,B2,BT

F (ι1(a1), ι2(a2)) = ιT (f (a1, a2))
f (ρ1(b1),ρ2(b2)) = ρT (F (b1,b2))

1.10.2 Formal Description

We now move to a formal description of the Groth-Sahai NIWI proof system. We stress that, we
explain the proof system for pairing product equation in the DLin setting, since we will use this
instantiation in our research. For more details on other equations, we refer to the original paper.
The content in this part is taken from [40].

We call an abelian group (A,+,0) a R-module for the finite commutative ring (R,+, .,0,1)
if there exist a scalar multiplication, that maps (r , x) ∈R×A to an element of r x ∈ A, with the
following properties:

(r + s)x = r x + sx, r (x + y) = r x + r y , r (sx) = (r s)x, 1x = x.

For example, we can mention a prime cyclic group G, |G| = p, which can be considered a
Zp -module.

Now for the commutative ring R and R-modules A1,A2,AT equipped with bilinear map
f : A1 ×A2 7→AT a quadratic equations over variables x1, . . . xm ∈A1 and y1, . . . , yn ∈A2 has the
following form:

n∑
j=1

f (a j , y j)+
m∑

i=1

n∑
j=1

γi j f (xi , y j)+
m∑

i=1
f (xi ,bi) = t

where a1, . . . an ∈A1,b1, . . .bm ∈A2 and γi j ∈R.
In order to avoid the heavy notation, we define

a⃗ = (a1. . . . , an) ∈An
1 , b⃗ = (b1, . . .bm) ∈Am

2 ,Γ= [γi j]n×m ∈Rn×m .

As a result, we will obtain
a⃗ · y⃗ + x⃗ ·Γ · y⃗ + x⃗ · b⃗ = t ,

where x⃗ · y⃗ =∑n
i=1 f (xi , yi).

Commitment from Modules: Following the Groth-Sahai technique, to commit to the elements
from R-moduleA, we first define homomorphisms (R-linear)

ι :A 7→B and ρ : B 7→A,

1.10. Groth Sahai NIWI proof System 25

then we take u1, . . . ,um̂
$←− B and we let U be the space generated by elements u1, . . . ,un i.e.,

U = 〈u1, . . . ,um̂〉. In fact, the public key for the commitment scheme will describe the R-modulo
B and these two homomorphisms. We require that operations in B and computation of the map
ι are efficiently computable, but ρ is hard to compute.

Then to commit x ∈A, the algorithm picks m̂ value r1, . . . ,rm̂
$←−R and output the following

value as the commitment:

Com= ι(x)+
m̂∑

i=1
ri ui

Notation. To simplify our notation to present the commitment to elements

x1, . . . , xm ∈A,

we will write
c⃗ = ι1(⃗x)+Ru⃗ (1.10)

where

R ∈ M atm×m̂(R) , Comi = ι(xi)+
m̂∑

j=1
ri j u j .

• Commitment keys: This commitment scheme has two types of commitment keys:

• Binding key defines (B, ι,ρ,u1, . . . ,um̂) where ρ(ui) = 0 and ρ ◦ ι is nontrivial for all i =
1. . . ,m̂.

∀i : ρ(ui) = 0 =⇒ ρ(Com) = ρ(ι(x)+
m̂∑

i=1
ri ui) =

= ρ(ι(x))+
m̂∑

i=1
ri ρ(ui)︸ ︷︷ ︸

0

= ρ(ι(x))

(1.11)

Hence the non-trivial information inside the commitment, ρ(ι(x)), make the commitment
is perfectly binding to x.

• Hiding key defines (B, ι,ρ,u1, . . . ,um̂) where ι(A) ⊆ 〈u1, . . . ,um̂〉:

x ∈A ∃αi ∈R : ι(x) =
m̂∑

i=1
αi ui =⇒ Com= ρ(ι(x)+

m̂∑
i=1

ri ui) =

=
m̂∑

i=1
αi ui +

m̂∑
i=1

ri (ui)

=
m̂∑

i=1
(αi + ri)ui

(1.12)

therefore, Com perfectly hides the element x since r1, . . . ,ri are chosen at random from R.

1.10.3 Groth-Sahai NIWI Proofs

We now outline how to prove the satisfiability of pairing product equations and in Section 0.11
we briefly present the Groth-Sahai proof system under the Subgroup Decision assumption and
DLIN assumptions for pairing product equations.

26 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

FIGURE 1.9: Commutative Diagram for Groth-Sahai Proofs in DLin setting

1.10.4 Set Up

In the setup algorithm of the Groth-Sahai Proof System, the CRS contains the commitment keys:

Com1
key = (ι1,ρ1,B1,U = 〈u1, . . . ,um̂〉),

Com2
key = (ι2,ρ2,B2,V = 〈v1, . . . , vn̂〉),

ComT
key = (ιT ,ρT ,BT),

to commit to element inA1 (A2).
Considering the above commitment scheme, the CRS and gk define the following parame-

ters:

gk 7→ (R,A1,A2,AT , f),

crs 7→ (
Com2

key,ComT
key,ComT

key, H1, . . . Hk
)

It is required that the maps are commutative as described in Figure 9 and except ρ1,ρ2,ρT

all maps are efficiently computable. To avoid confusion, we present the action group in groups
B1,B2,BT with • which results to:

x⃗ ∈Bn
1 , y⃗ ∈Bn

2 =⇒ x⃗ • y⃗ =
n∑

i=1
F (xi , yi)

The final part of the CRS is a set of matrices H1, . . . , Hk ∈ M atm̂×n̂(R) that all satisfy u⃗•H v⃗ = 0.
The exact number k depends on the concrete setting.

Now we present two different settings:

Soundness setting: In this setting, we have the binding commitment keys:

ρ1(u⃗) = 0,ρ2(v⃗) = 0

and the maps ρ1 ◦ ι1, ρ2 ◦ ι2 and ρT ◦ ιT are non-trivial.

Witness Indistinguishability Setting. In this setting we have the hiding commitment keys:

ι1(A1) ⊆ 〈u1, . . . ,um̂〉, ι2(A2) ⊆ 〈v1, . . . , vn̂〉,

1.11. Instantiation Based on the DLin Assumption 27

and also H1, . . . , Hk generate the R-module of all matrices H ∈ M atm̂×n̂(R) such that:

u⃗ •H v⃗ = 0.

Considering the above setting, the first step in of Groth-Sahaiproof techniques is to commit
to all the variables x⃗ and y⃗ , c⃗ = ι1(⃗x)+Ru⃗, d⃗ = ι2(y⃗)+Sv⃗ with R ∈ M atm×m̂(R).

The second step is to show that these c⃗ and d⃗ are committed to the values that satisfy the
equation.

Formal Description. Consider the relation RGS with the equation 13 that has variables x⃗ and y⃗
from groups G1 and G2.

a⃗ · y⃗ + x⃗ ·Γ · y⃗ + x⃗ · b⃗ = t (1.13)

Prover and the verifier perform the following computations:

• Prover: Choose random matrix T
$←− M atn̂×m̂(R) and r1, . . . ,rη

$←−R. Obtain:

π⃗ := R⊤ι2(⃗b)+R⊤Γι2(y⃗)+R⊤ΓSv⃗ −T ⊤v⃗ +
η∑

i=1
ri Hi v⃗

θ⃗ := S⊤ι1(a⃗)+S⊤Γ⊤ι1(⃗x)+T u⃗

and return the proof (⃗π, θ⃗)

• Verifier: Return 1 if and only if:

ι1(a⃗)• d⃗ + c⃗ • ι2(⃗b)+ c⃗ •Γd⃗ = ιT (t)+ u⃗ • π⃗+ θ⃗ • v⃗

Completeness, soundness (in the soundness setting) and witness-indistinguishable in the (in WI
setting) are proved in [40].

1.11 Instantiation Based on the DLin Assumption

this section presents an instantiation of the Groth-Sahai NIWI-proof system based on the Deci-
sional Linear assumption.

Recall that DLin states that given

(g , A = gα,B = gβ,C = g rα,D = g sβ, Z) ∈G6

for random α,β,r , s it is hard to tell whether Z = g r+s or is random. (See formal definition in ??).
We now describe the proof system.

• Equation in DLin Setting.

Pairing product equations:

R=Zp ,A1 =A2 =G,AT =GT , f (x, y) = e(x, y) : (A⃗ · Y⃗)(Y⃗ ·ΓY⃗) = tT

Multi-scalar multiplication in G :

R=Zp , A1 =Zp ,A2 =G, AT =G, f (x,Y) = xY : a⃗ · Y⃗ + x⃗B⃗+ x⃗ ·ΓY⃗ = T
Quadratic equations:

R=Zp ,A1 =Zp ,A2 =Zp ,AT =Zp , f (x, y) = x y : x⃗ · b⃗ + x⃗ ·Γx⃗ = t

(1.14)

• Commitment Keys. We will now describe how to commit to elements in Zp and G.

28 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

1. The commitments will belong to theZp -module B=G3 formed by entry-wise action.

2. For two integers α,β
$←−Zp we define

U = gα,O = 1G,V = gβ ∈G.

3. The commitment key is of the form

u1 = (A = gα,O, g),u2 = (O,B = gβ, g),

{
u3 = (Ar ,B s , g r+s); Binding Setting

u3 = (Ar ,B s , g r+s−1); Hiding Setting

And the two maps:

ι :G 7→G3 ; ι(Y) = (0,0,Y),

ρ :G3 7→G ; ρ(Z1, Z2, Z3) = Z3 ·Z
− 1
α

1 ·Z
1
β

2 .

To commit to some Y ∈Gwe pick three random numbers r1,r2,r3 and obtain

Com(Y) = ι(Y) =
3∑

i=1
ri ui .

If u1,u2,u3 are linearly independent we obtain a perfectly hiding commitment scheme:

– Perfectly hiding:

Com : G 7→G3

Com(Y) = (0,0,Y)+ r1(A,O, g)+ r2(O,B , g)+ r3(Ar ,B s , g r+s−1)

= (Ar1+r r3 ,B r2+r3s , g r1+r2+r3(r+s−1) +Y)

– Perfectly binding: In case of binding key ρ ◦ ι= I

Com : G 7→G3

Com(Y) = (0,0,Y)+ r1(A,O, g)+ r2(O,B , g)+ r3(Ar ,B s , g r+s)

= (Ar1+r r3 ,B r2+r3s , g r1+r2+r3(r+s) +Y)

Which is the encryption of (Z1, Z2, Z3) respect to BBS Linear-Encryption (See ??)
with key pk= (U ,V ,H= gαβ),sk= (α,β).

To commit to an exponent, an integer, x ∈ Zp , we define, u = u3 + (0,0, g), ι(x) = xu
and ρ(c1,c2,c3) = logg (c3 − 1

αc1 − 1
βc2) and then the commitment is

Com(x) = wu + r1u1 + r2u2.

• Common Reference String: We consider (A1 = A2 = AT = Zp) for exponents, (A1,A2 =
Zp ,AT = GT) for group elements and (B1 = B2 = G3,BT = G9

T) for the target groups. Con-
sidering the original bilinear map e :G×G 7→GT defined by the group generator G(1ℓ), we
define the following bilinear maps:

F̃

x1

x2

x3

 ,

y1

y2

y3

=
 f (x1, y1) f (x1, y2) f (x1, y3)

f (x2, y1) f (x2, y2) f (x2, y3)
f (x3, y1) f (x3, y2) f (x3, y3)

 :

F = (x, y) = 1

2
F̃ (x, y)+ 1

2
F̃ (y , x).

1.11. Instantiation Based on the DLin Assumption 29

where:

For exponents: x, y ∈Zp : f (x, y) = x · y mod p

For group elements: x, y ∈Zp : f (x, y) = e(x, y)

We use the notation • and •̃ for F and F̃ respectively, as the underlying bilinear maps.

• Maps for each equation

1. Pairing Product Equation:

ιT (z) :Zp 7→G9, ιT (z) =
1 1 1

1 1 1
1 1 z


ρT :G9 7→Zp , ρT (

z11 z12 z13

z21 z22 z23

z31 z32 z33

) = z33z
− 1
α

13 z
− 1
β

23

(
z31z

− 1
α

11 z
− 1
β

21

)− 1
α
(
z32z

− 1
α

12 z
− 1
β

22

)− 1
β

H-matrices for F :

H1 =
 0 1 0
−1 0 0
0 0 0

 , H2 =
0 0 1

0 0 0
0 −1 0

 , H3 =
0 0 0

0 0 1
0 −1 0


2. Multi Scalar Equation:

ιms
T (Z) :Zp 7→G9, ιms

T (Z) = F̃ (ι′(1), ι(Z)) = F̃ (u, (O,O,Z))
ρms

T :G9 7→Zp , ρms
T = e−1(ρT (z)) where e−1(e(g ,Z)) :=Z .

In the soundness setting ρms
T · ιms

T = IG
3. Quadratic Equation in Zp

˜ιT q(z) :Zp 7→G9, ι
q
T (Z) = F̃ (ι′(1), ι′(z))

ι
q
T (z) :Zp 7→G9, ι

z.q
T (Z) = F̃ (ι′(1), ι′(z))

ρ
q
T :G9 7→Zp , ρ

z.q
T = loge(g ,g)(ρT (z)).

In the soundness setting ρqT · ιqT = IZp

• NIWI proof

1. Setup: G(1ℓ) 7→ gk= (p,G,GT ,e, g)

2. Soundness String On input gk return crs := (u1,u2,u3) for random integersα,β
$←−Z∗

p

and r , s
$←−Zp

u1 = (A = gα,O, g),u2 = (O,B = gβ, g),u3 = (Ar ,B s , g r+s−1) = r u1 + su2

3. Witness Indistinguishability String: On input gk return crs := (u1,u2,u3) for random

integers α,β
$←−Z∗

p and r , s
$←−Zp

u1 = (A = gα,O, g),u2 = (O,B = gβ, g),u3 = (Ar ,B s , g r+s) = r u1 + su2 − (O,O, g)

• Prover: On input x = gk,crs,E and w = x⃗, Y⃗ , the algorithm takes the following steps:

30 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

1. Commit to the integers x⃗ ∈Zm
p and the group elements Y⃗ ∈Gn by randomly choosing

R
$←− M atm×2(Zp) and S

$←− M atn×3(Zp) returns c⃗, d⃗ :

c⃗ = ι′(⃗x)+Rv⃗ , d⃗ = ι(Y⃗)+Su⃗

2. For each pairing product equation of the form, (A⃗ · Y⃗)(Y⃗ ·ΓY⃗) = tT generates a proof

using the map F and random integers r1,r2,r3
$←−Zp :

Φ⃗ := S⊤ι(A⃗)+S⊤(Γ+Γ⊤)ι(Y⃗)+S⊤ΓS(u⃗)+
3∑

i=1
ri Hi u⃗

for each linear equation A⃗ · Y⃗ = tT , by using map F̃ generates the proof:

π⃗= 0⃗, θ⃗ = S⊤ι(A⃗)

3. For each multi-scalar multiplication equation generates a proof using the map F and

random integers r1,r2,r3
$←− Zp to build R, and we let R ′ be R 10 with an appended

0-row. The proof is:

Φ⃗ := (R ′)⊤ι(B⃗)+ (R ′)⊤(Γ)ι(Y⃗)+S⊤ι′(a⃗)+S⊤Γ⊤ι′(⃗x)+ (R ′)⊤ΓSu⃗ +
3∑

i=1
ri Hi u⃗.

• Verifier: The verifier needs to check if the following equation does hold on input (gk,crs),
c⃗, d⃗ and proof Φ for each equation as follows:

1. For each pairing product equation:

ι(A⃗)• d⃗ + d⃗ •Γd⃗ = ιT (tT)+ u⃗ • Φ⃗.

2. For each linear equation A · Y⃗ = tT :

ι(A⃗)•̃d⃗ = ιT (tT)+ ιT (tT)+ ι(φ⃗)•̃u⃗.

3. For multi-scalar multiplication:

ι′(a⃗)• d⃗ + c⃗ • ι(B⃗)+ c⃗ •Γd⃗ = ιms
T (T)+ u⃗ • Φ⃗.

4. For each linear equation a⃗ · Y⃗ = T :

ι(a⃗)′•̃d⃗ = ιms
T (T)+ ι′(Φ⃗)•̃u⃗.

5. For each linear equation x⃗ · B⃗ = T :

ι(⃗c)•̃ι(B) = ιms
T (T)+ v⃗ •̃ι(Φ).

6. For each quadratic equation:

c⃗ • ι′(⃗b)+ c⃗ •Γc⃗ = ι′T (t)+ v⃗ • Φ⃗.

7. For each linear equation x⃗ · b⃗ = t :

c⃗ •̃ι′(⃗b) = ι′T (t)+ v⃗ •̃ι(Φ⃗).

1.12. OR Statements 31

Theorem 1.11.1. [40] The above protocol is a NIWI proof with perfect completeness, perfect
soundness and composable witness-indistinguishability for satisfiability of a set of equations over
a bilinear group where the DLin problem is hard.

Additional Note. In the improvement of Groth-Sahai technique in [18] they replace replace
some of the commitments with ElGamal encryptions, which reduces the prover’s computation
and for some types of equations, reduces the proof size in SXDH setting ??, the one that we will
use in section ??.

1.12 OR Statements

1Some of our relations of Section ?? consist of a generalized form of disjunction (OR) of two
predicates, let us say P1 and P2. Suppose that we have equivalent systems of equations for each
of the two predicates that are a system of equations E1 (resp. E2) representing predicate P1 (resp.
P2). Consider the following relation:

ROR ={
(x, w)| x = (E1,E2), w = (idx, w1, w2) : idx ∈ {1,2} ∧

(Eidx, widx) ∈ RE ∧ w ¯idx ∈G3},

where ¯idx means {1,2}/{idx}.
Notice that the relation is not exactly a disjunction of pairing product equations because we

need to make sure that the statement that holds is the one selected by the index in the witness,
so we cannot use the technique of Groth [37] and we will follow a different approach.

By hypothesis, PGS takes as input a system of equations E as a statement and a solution
(g1, . . . , gm) as a witness and provides a NIWI-proof of membership of (E, w) ∈ RE . Therefore,
to use NIWIGS to generate a NIWI-proof for relation ROR , we need to define a third system of
equation EOR with the following properties:

1. EOR ≈ ROR . With this notation, we mean that there are two efficiently computable func-
tions f and g such that:

∃w = (idx, w1, w2)
(
x = (E1,E2), w

) ∈ ROR ⇔∃w̃
(
EOR = f (x), w̃

) ∈ RE .(
x, w

) ∈ ROR ⇒ (
f (x), g (x, w)

) ∈ ROR .

The latter properties guarantee that a proof for relation ROR computed using NIWIGS sat-
isfies completeness and soundness. For WI to hold, we need the following property.

2. The function f is efficiently invertible.

Now we show how to construct the system of equations EOR with the properties above. Consider
two systems of pairing product equations E1 and E2 - same structure as in 7. For simplicity, we
assume the equations are over two variables (the general case is straightforward).

E1 : e(X1, a1) ·e(X2, a2) = τ1 ,E2 : e(Y1,b1) ·e(Y2,b2) = τ2

1This section is part of our publication in [53]

32 Chapter 1. A Brief Survey on Zero-Knowledge Proof Systems

We define the new system of equations EOR with 4 new variables Z11,Z12,Z21,Z22 as follows:

EOR :



e(X1, a1) ·e(X2, a2) ·e(Z11,Z12) = τ1

e(Y1,b1) ·e(Y2,b2) ·e(Z21,Z22) = τ2

e(Z11,Z22) = 1

e(Z11, g) ·e(Zidx, g) = e(g , g)

e(Z22, g) ·e(Zidx, g) = e(g 2, g)

Analysis of the equations: Consider

(Zidx ←- g idx,X1 ←- g1,X2 ←- g2,Y1 ←- g3,Y2 ←- g4,Z11 ←- g11, . . . ,Z22 ←- g22)

as a solution for EOR. So, there exist values idx, z11, z22 ∈Zp such that

g idx = g idx, g11 = g z11 , g22 = g z22

and for t ∈ [k] there exist values αt such that τt = e(g ,αt).

• e(Z11, g) ·e(Zidx, g) = e(g , g) ⇒ e(g z11+idx−1, g) = 1

⇒ z11 = 1− idx and similarly z22 = 2− idx.

• e(Z11,Z22) = 1 ⇒ (z11 = 0 ∨ z22 = 0)

• z11 = 0 ∧ z11 = 1− idx⇒ e(X1 ←- g1, a1) ·e(X2 ←- g2, a2) = τ1

⇒ (E1[g1, g2] =True ∧ idx= 1)

• Similarly, z22 = 0 ∧ z22 = 2− idx

⇒ e(Z21,Z22) = 1 ⇒ (E2[g3, g4] =True ∧ idx= 2)

The above facts imply that:

EOR[(g idx, g1, . . . , g4, g11, . . . , g22)] =True⇒(
(E1[g1, g2,α1] =True ∧ idx= 1

)
∨

(
E2[g3, g4,α2] =True ∧ idx= 2)

)
,

as it was to show. It is also easy to see that the previous transformation is efficiently invertible.
For the other direction, suppose w.l.o.g that w1 = (g1, g2,α1) is a solution to x =E1 (the other

case is symmetrical, and we omit it), namely (x, w1) ∈ R, . Suppose also that w2 = (g3, g4,α2) ∈G3

is an arbitrary triple of elements of G. Therefore (1, w1, w2) is a witness to (E1,E2) with respect to
relation ROR . Then, setting

(Zidx ←- g 1,X1 ←- g1,X2 ←- g2,Y1 ←- g 0,Y2 ←- g 0,Z11 ←- g 0,Z12 ←- g 1,Z21 ←-α2,Z22 ←- g 1),

we have that:
EOR[(g idx, g1, . . . , g4, g11, . . . , g22)] =True.

(Notice that we implicitly defined a transformation g as needed.)

OR proof in the general case. If the number of pairing products (m) in each of the two equations
is greater than 1, such as:

E1 :

{
e(X1, a1) ·e(X2, a2) = τ1

e(X1, a′
1) ·e(X2, a′

2) = τ′1
, E2 :

{
e(Y1,b1) ·e(Y2,b2) = τ2

e(Y1,b′
1) ·e(Y2, a′

2) = τ′2

1.12. OR Statements 33

then EOR can be defined as:

EOR :



e(X1, a1) ·e(X1, a2) ·e(Z11,Z12) = τ1

e(X1, a′
1) ·e(X2, a′

2) ·e(Z11,Z13) = τ′1
e(Y1,b1) ·e(Y2,b2) ·e(Z21,Z22) = τ2

e(Y1,b′
1) ·e(Y2,b′

2) ·e(Z23,Z22) = τ′2
e(Z11,Z22) = 1

e(Z11, g) ·e(Zidx, g) = e(g , g)

e(Z22, g) ·e(Zidx, g) = e(g 2, g)

35

Bibliography

[1] Boaz Barak. “How to Go Beyond the Black-Box Simulation Barrier”. In: FOCS. 2001, pp. 106–
115. DOI: 10.1109/SFCS.2001.959885.

[2] Boaz Barak and Yehuda Lindell. “Strict Polynomial-Time in Simulation and Extraction”.
In: SIAM J. Comput. 33.4 (2004), pp. 738–818. DOI: 10.1137/S0097539703427975. URL:
https://doi.org/10.1137/S0097539703427975.

[3] Stephanie Bayer and Jens Groth. “Efficient Zero-Knowledge Argument for Correctness of
a Shuffle”. In: Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. Ed. by David Pointcheval
and Thomas Johansson. Vol. 7237. Lecture Notes in Computer Science. Springer, 2012,
pp. 263–280.

[4] Stephanie Bayer and Jens Groth. “Zero-Knowledge Argument for Polynomial Evaluation
with Application to Blacklists”. In: Advances in Cryptology - EUROCRYPT 2013, 32nd An-
nual International Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings. Ed. by Thomas Johansson and Phong Q.
Nguyen. Vol. 7881. Lecture Notes in Computer Science. Springer, 2013, pp. 646–663. DOI:
10.1007/978-3-642-38348-9_38. URL: https://doi.org/10.1007/978-3-642-
38348-9_38.

[5] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols”. In: CCS ’93, Proceedings of the 1st ACM Conference on Computer
and Communications Security, Fairfax, Virginia, USA, November 3-5, 1993. Ed. by Dorothy
E. Denning et al. ACM, 1993, pp. 62–73. DOI: 10.1145/168588.168596. URL: https:
//doi.org/10.1145/168588.168596.

[6] Mihir Bellare and Moti Yung. “Certifying Permutations: Noninteractive Zero-Knowledge
Based on Any Trapdoor Permutation”. In: J. Cryptol. 9.3 (1996), pp. 149–166.

[7] Michael Ben-Or et al. “Everything Provable is Provable in Zero-Knowledge”. In: Advances
in Cryptology - CRYPTO ’88, 8th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 21-25, 1988, Proceedings. Ed. by Shafi Goldwasser. Vol. 403.
Lecture Notes in Computer Science. Springer, 1988, pp. 37–56. DOI: 10.1007/0-387-
34799-2_4. URL: https://doi.org/10.1007/0-387-34799-2_4.

[8] Fabrice Benhamouda et al. “Implicit Zero-Knowledge Arguments and Applications to the
Malicious Setting”. In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II. Ed. by Rosario
Gennaro and Matthew Robshaw. Vol. 9216. Lecture Notes in Computer Science. Springer,
2015, pp. 107–129. DOI: 10.1007/978-3-662-48000-7_6. URL: https://doi.org/10.
1007/978-3-662-48000-7_6.

[9] Olivier Blazy et al. “Batch Groth-Sahai”. In: Applied Cryptography and Network Security,
8th International Conference, ACNS 2010, Beijing, China, June 22-25, 2010. Proceedings.
Ed. by Jianying Zhou and Moti Yung. Vol. 6123. Lecture Notes in Computer Science. 2010,
pp. 218–235. DOI: 10.1007/978-3-642-13708-2_14. URL: https://doi.org/10.
1007/978-3-642-13708-2_14.

https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1137/S0097539703427975
https://doi.org/10.1137/S0097539703427975
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/978-3-662-48000-7_6
https://doi.org/10.1007/978-3-662-48000-7_6
https://doi.org/10.1007/978-3-662-48000-7_6
https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-642-13708-2_14

36 Bibliography

[10] Fabrice Boudot. “Efficient Proofs that a Committed Number Lies in an Interval”. In: Ad-
vances in Cryptology - EUROCRYPT 2000, International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding. Ed.
by Bart Preneel. Vol. 1807. Lecture Notes in Computer Science. Springer, 2000, pp. 431–
444. DOI: 10.1007/3-540-45539-6_31. URL: https://doi.org/10.1007/3-540-
45539-6_31.

[11] Ran Canetti, Oded Goldreich, and Shai Halevi. “The Random Oracle Methodology, Revis-
ited (Preliminary Version)”. In: Proceedings of the Thirtieth Annual ACM Symposium on
the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998. Ed. by Jeffrey Scott Vitter.
ACM, 1998, pp. 209–218. DOI: 10.1145/276698.276741. URL: https://doi.org/10.
1145/276698.276741.

[12] Ran Canetti et al. “Fiat-Shamir: From Practice to Theory”. In: Proceedings of the 51st An-
nual ACM SIGACT Symposium on Theory of Computing. STOC 2019. Phoenix, AZ, USA:
Association for Computing Machinery, 2019, 1082–1090. ISBN: 9781450367059. DOI: 10.
1145/3313276.3316380. URL: https://doi.org/10.1145/3313276.3316380.

[13] Pyrros Chaidos and Geoffroy Couteau. “Efficient Designated-Verifier Non-interactive Zero-
Knowledge Proofs of Knowledge”. In: Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III. Ed. by Jesper Buus
Nielsen and Vincent Rijmen. Vol. 10822. Lecture Notes in Computer Science. Springer,
2018, pp. 193–221. DOI: 10.1007/978-3-319-78372-7_7. URL: https://doi.org/10.
1007/978-3-319-78372-7_7.

[14] Melissa Chase, Chaya Ganesh, and Payman Mohassel. “Efficient Zero-Knowledge Proof
of Algebraic and Non-Algebraic Statements with Applications to Privacy Preserving Cre-
dentials”. In: Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III. Ed.
by Matthew Robshaw and Jonathan Katz. Vol. 9816. Lecture Notes in Computer Science.
Springer, 2016, pp. 499–530. DOI: 10.1007/978- 3- 662- 53015- 3_18. URL: https:
//doi.org/10.1007/978-3-662-53015-3_18.

[15] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. “Proofs of Partial Knowledge
and Simplified Design of Witness Hiding Protocols”. In: Advances in Cryptology - CRYPTO
’94, 14th Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 21-25, 1994, Proceedings. Ed. by Yvo Desmedt. Vol. 839. Lecture Notes in Computer
Science. Springer, 1994, pp. 174–187. DOI: 10.1007/3-540-48658-5_19. URL: https:
//doi.org/10.1007/3-540-48658-5_19.

[16] Ivan Damgård. “Efficient Concurrent Zero-Knowledge in the Auxiliary String Model”. In:
Advances in Cryptology - EUROCRYPT 2000, International Conference on the Theory and
Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding.
Ed. by Bart Preneel. Vol. 1807. Lecture Notes in Computer Science. Springer, 2000, pp. 418–
430. DOI: 10.1007/3-540-45539-6_30. URL: https://doi.org/10.1007/3-540-
45539-6_30.

[17] Apoorvaa Deshpande and Yael Kalai. “Proofs of Ignorance and Applications to 2-Message
Witness Hiding”. In: IACR Cryptol. ePrint Arch. (2018), p. 896. URL: https://eprint.
iacr.org/2018/896.

[18] Alex Escala and Jens Groth. “Fine-Tuning Groth-Sahai Proofs”. In: Public-Key Cryptogra-
phy - PKC 2014 - 17th International Conference on Practice and Theory in Public-Key Cryp-
tography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings. Ed. by Hugo Krawczyk.
Vol. 8383. Lecture Notes in Computer Science. Springer, 2014, pp. 630–649. DOI: 10.1007/

https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1145/276698.276741
https://doi.org/10.1145/276698.276741
https://doi.org/10.1145/276698.276741
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/3-540-45539-6_30
https://eprint.iacr.org/2018/896
https://eprint.iacr.org/2018/896
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36

Bibliography 37

978-3-642-54631-0_36. URL: https://doi.org/10.1007/978-3-642-54631-
0_36.

[19] Uriel Feige, Dror Lapidot, and Adi Shamir. “Multiple Non-Interactive Zero Knowledge Proofs
Based on a Single Random String (Extended Abstract)”. In: 31st Annual Symposium on
Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I.
IEEE Computer Society, 1990, pp. 308–317.

[20] Uriel Feige and Adi Shamir. “Witness Indistinguishable and Witness Hiding Protocols”.
In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-
17, 1990, Baltimore, Maryland, USA. Ed. by Harriet Ortiz. ACM, 1990, pp. 416–426. DOI:
10.1145/100216.100272. URL: https://doi.org/10.1145/100216.100272.

[21] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to Identification
and Signature Problems”. In: Advances in Cryptology - CRYPTO ’86, Santa Barbara, Cali-
fornia, USA, 1986, Proceedings. Ed. by Andrew M. Odlyzko. Vol. 263. Lecture Notes in Com-
puter Science. Springer, 1986, pp. 186–194. DOI: 10.1007/3-540-47721-7_12. URL:
https://doi.org/10.1007/3-540-47721-7_12.

[22] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. “Privacy-Free Gar-
bled Circuits with Applications to Efficient Zero-Knowledge”. In: Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II.
Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057. Lecture Notes in Computer Science.
Springer, 2015, pp. 191–219. DOI: 10.1007/978- 3- 662- 46803- 6_7. URL: https:
//doi.org/10.1007/978-3-662-46803-6_7.

[23] Jun Furukawa and Kazue Sako. “An Efficient Scheme for Proving a Shuffle”. In: Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 19-23, 2001, Proceedings. Ed. by Joe Kilian. Vol. 2139. Lecture
Notes in Computer Science. Springer, 2001, pp. 368–387. DOI: 10.1007/3-540-44647-
8_22. URL: https://doi.org/10.1007/3-540-44647-8_22.

[24] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. “Strengthening Zero-Knowledge Proto-
cols Using Signatures”. In: J. Cryptol. 19.2 (2006), pp. 169–209. DOI: 10.1007/s00145-
005-0307-3. URL: https://doi.org/10.1007/s00145-005-0307-3.

[25] Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. “Groth-Sahai Proofs Revisited”. In:
Public Key Cryptography - PKC 2010, 13th International Conference on Practice and Theory
in Public Key Cryptography, Paris, France, May 26-28, 2010. Proceedings. Ed. by Phong Q.
Nguyen and David Pointcheval. Vol. 6056. Lecture Notes in Computer Science. Springer,
2010, pp. 177–192. DOI: 10.1007/978-3-642-13013-7_11. URL: https://doi.org/
10.1007/978-3-642-13013-7_11.

[26] Oded Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Vol. 17.
Algorithms and Combinatorics. Springer, 1998. ISBN: 978-3-540-64766-9. DOI: 10.1007/
978-3-662-12521-2. URL: https://doi.org/10.1007/978-3-662-12521-2.

[27] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques. Cam-
bridge University Press, 2001. ISBN: 0-521-79172-3. DOI: 10.1017/CBO9780511546891.
URL: http://www.wisdom.weizmann.ac.il/\%7Eoded/foc-vol1.html.

[28] Oded Goldreich. “Zero-Knowledge twenty years after its invention”. In: Electron. Collo-
quium Comput. Complex. 063 (2002). URL: https://eccc.weizmann.ac.il/eccc-
reports/2002/TR02-063/index.html.

[29] Oded Goldreich and Hugo Krawczyk. “On the composition of zero-knowledge proof sys-
tems”. In: Automata, Languages and Programming. Ed. by Michael S. Paterson. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1990, pp. 268–282. ISBN: 978-3-540-47159-2.

https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1145/100216.100272
https://doi.org/10.1145/100216.100272
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/s00145-005-0307-3
https://doi.org/10.1007/s00145-005-0307-3
https://doi.org/10.1007/s00145-005-0307-3
https://doi.org/10.1007/978-3-642-13013-7_11
https://doi.org/10.1007/978-3-642-13013-7_11
https://doi.org/10.1007/978-3-642-13013-7_11
https://doi.org/10.1007/978-3-662-12521-2
https://doi.org/10.1007/978-3-662-12521-2
https://doi.org/10.1007/978-3-662-12521-2
https://doi.org/10.1017/CBO9780511546891
http://www.wisdom.weizmann.ac.il/\%7Eoded/foc-vol1.html
https://eccc.weizmann.ac.il/eccc-reports/2002/TR02-063/index.html
https://eccc.weizmann.ac.il/eccc-reports/2002/TR02-063/index.html

38 Bibliography

[30] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to play any mental game, or a
completeness theorem for protocols with honest majority”. In: Providing Sound Founda-
tions for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali. Ed. by Oded
Goldreich. ACM, 2019, pp. 307–328. DOI: 10.1145/3335741.3335755. URL: https://
doi.org/10.1145/3335741.3335755.

[31] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs that Yield Nothing But their Va-
lidity and a Methodology of Cryptographic Protocol Design (Extended Abstract)”. In: 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 Octo-
ber 1986. IEEE Computer Society, 1986, pp. 174–187. DOI: 10.1109/SFCS.1986.47. URL:
https://doi.org/10.1109/SFCS.1986.47.

[32] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs That Yield Nothing but Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems”. In: J. ACM 38.3 (July
1991), 690–728. ISSN: 0004-5411. DOI: 10.1145/116825.116852. URL: https://doi.
org/10.1145/116825.116852.

[33] Oded Goldreich and Yair Oren. “Definitions and Properties of Zero-Knowledge Proof Sys-
tems”. In: J. Cryptol. 7.1 (1994), pp. 1–32. DOI: 10.1007/BF00195207. URL: https://doi.
org/10.1007/BF00195207.

[34] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge Complexity of In-
teractive Proof Systems”. In: SIAM J. Comput. 18.1 (1989), pp. 186–208. DOI: 10.1137/
0218012. URL: https://doi.org/10.1137/0218012.

[35] Jens Groth. “Efficient Zero-Knowledge Arguments from Two-Tiered Homomorphic Com-
mitments”. In: Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference
on the Theory and Application of Cryptology and Information Security, Seoul, South Ko-
rea, December 4-8, 2011. Proceedings. Ed. by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073.
Lecture Notes in Computer Science. Springer, 2011, pp. 431–448. DOI: 10.1007/978-3-
642-25385-0_23. URL: https://doi.org/10.1007/978-3-642-25385-0_23.

[36] Jens Groth. “Linear Algebra with Sub-linear Zero-Knowledge Arguments”. In: Advances in
Cryptology - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 16-20, 2009. Proceedings. Ed. by Shai Halevi. Vol. 5677. Lecture Notes
in Computer Science. Springer, 2009, pp. 192–208. DOI: 10.1007/978-3-642-03356-
8_12. URL: https://doi.org/10.1007/978-3-642-03356-8_12.

[37] Jens Groth. “Simulation-Sound NIZK Proofs for a Practical Language and Constant Size
Group Signatures”. In: Advances in Cryptology - ASIACRYPT 2006, 12th International Con-
ference on the Theory and Application of Cryptology and Information Security, Shanghai,
China, December 3-7, 2006, Proceedings. Ed. by Xuejia Lai and Kefei Chen. Vol. 4284. Lec-
ture Notes in Computer Science. Springer, 2006, pp. 444–459. DOI: 10.1007/11935230\
_29. URL: https://doi.org/10.1007/11935230_29.

[38] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “Non-interactive Zaps and New Techniques
for NIZK”. In: Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings. Ed. by
Cynthia Dwork. Vol. 4117. Lecture Notes in Computer Science. Springer, 2006, pp. 97–111.
DOI: 10.1007/11818175_6. URL: https://doi.org/10.1007/11818175_6.

[39] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “Perfect Non-interactive Zero Knowledge for
NP”. In: Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28
- June 1, 2006, Proceedings. Ed. by Serge Vaudenay. Vol. 4004. Lecture Notes in Computer
Science. Springer, 2006, pp. 339–358. DOI: 10.1007/11761679_21. URL: https://doi.
org/10.1007/11761679_21.

https://doi.org/10.1145/3335741.3335755
https://doi.org/10.1145/3335741.3335755
https://doi.org/10.1145/3335741.3335755
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/BF00195207
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21

Bibliography 39

[40] Jens Groth and Amit Sahai. “Efficient Noninteractive Proof Systems for Bilinear Groups”.
In: SIAM J. Comput. 41.5 (2012), pp. 1193–1232. DOI: 10.1137/080725386. URL: https:
//doi.org/10.1137/080725386.

[41] Thomas Haines and Johannes Müller. “A Novel Proof of Shuffle: Exponentially Secure Cut-
and-Choose”. In: Information Security and Privacy - 26th Australasian Conference, ACISP
2021, Virtual Event, December 1-3, 2021, Proceedings. Ed. by Joonsang Baek and Sushmita
Ruj. Vol. 13083. Lecture Notes in Computer Science. Springer, 2021, pp. 293–308. DOI: 10.
1007/978-3-030-90567-5_15. URL: https://doi.org/10.1007/978-3-030-
90567-5_15.

[42] Iftach Haitner, Alon Rosen, and Ronen Shaltiel. “On the (Im)Possibility of Arthur-Merlin
Witness Hiding Protocols”. In: Theory of Cryptography, 6th Theory of Cryptography Con-
ference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings. Ed. by Omer
Reingold. Vol. 5444. Lecture Notes in Computer Science. Springer, 2009, pp. 220–237. DOI:
10.1007/978-3-642-00457-5_14. URL: https://doi.org/10.1007/978-3-642-
00457-5_14.

[43] Russell Impagliazzo and Moti Yung. “Direct Minimum-Knowledge Computations”. In: A
Conference on the Theory and Applications of Cryptographic Techniques on Advances in
Cryptology. CRYPTO ’87. Berlin, Heidelberg: Springer-Verlag, 1987, 40–51. ISBN: 3540187960.

[44] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. “Designated Verifier Proofs and
Their Applications”. In: Advances in Cryptology - EUROCRYPT ’96, International Confer-
ence on the Theory and Application of Cryptographic Techniques, Saragossa, Spain, May
12-16, 1996, Proceeding. Ed. by Ueli M. Maurer. Vol. 1070. Lecture Notes in Computer Sci-
ence. Springer, 1996, pp. 143–154. DOI: 10.1007/3-540-68339-9_13. URL: https:
//doi.org/10.1007/3-540-68339-9_13.

[45] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. “Zero-Knowledge Using Gar-
bled Circuits: How To Prove Non-Algebraic Statements Efficiently”. In: IACR Cryptol. ePrint
Arch. (2013), p. 73. URL: http://eprint.iacr.org/2013/073.

[46] Caroline Kudla and Kenneth G. Paterson. “Non-interactive Designated Verifier Proofs and
Undeniable Signatures”. In: Cryptography and Coding, 10th IMA International Conference,
Cirencester, UK, December 19-21, 2005, Proceedings. Ed. by Nigel P. Smart. Vol. 3796. Lec-
ture Notes in Computer Science. Springer, 2005, pp. 136–154. DOI: 10.1007/11586821\
_10. URL: https://doi.org/10.1007/11586821_10.

[47] Benjamin Kuykendall and Mark Zhandry. “Towards Non-interactive Witness Hiding”. In:
Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA,
November 16-19, 2020, Proceedings, Part I. Ed. by Rafael Pass and Krzysztof Pietrzak. Vol. 12550.
Lecture Notes in Computer Science. Springer, 2020, pp. 627–656. DOI: 10.1007/978-3-
030-64375-1_22. URL: https://doi.org/10.1007/978-3-030-64375-1_22.

[48] Leonid A. Levin. “Average Case Complete Problems”. In: SIAM J. Comput. 15.1 (1986),
pp. 285–286. DOI: 10.1137/0215020. URL: https://doi.org/10.1137/0215020.

[49] Helger Lipmaa. “On Diophantine Complexity and Statistical Zero-Knowledge Arguments”.
In: Advances in Cryptology - ASIACRYPT 2003, 9th International Conference on the Theory
and Application of Cryptology and Information Security, Taipei, Taiwan, November 30 - De-
cember 4, 2003, Proceedings. Ed. by Chi-Sung Laih. Vol. 2894. Lecture Notes in Computer
Science. Springer, 2003, pp. 398–415. DOI: 10.1007/978-3-540-40061-5_26. URL:
https://doi.org/10.1007/978-3-540-40061-5_26.

[50] Eduardo Morais et al. “A Survey on Zero Knowledge Range Proofs and Applications”. In:
CoRR abs/1907.06381 (2019). arXiv: 1907.06381. URL: http://arxiv.org/abs/1907.
06381.

https://doi.org/10.1137/080725386
https://doi.org/10.1137/080725386
https://doi.org/10.1137/080725386
https://doi.org/10.1007/978-3-030-90567-5_15
https://doi.org/10.1007/978-3-030-90567-5_15
https://doi.org/10.1007/978-3-030-90567-5_15
https://doi.org/10.1007/978-3-030-90567-5_15
https://doi.org/10.1007/978-3-642-00457-5_14
https://doi.org/10.1007/978-3-642-00457-5_14
https://doi.org/10.1007/978-3-642-00457-5_14
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/3-540-68339-9_13
http://eprint.iacr.org/2013/073
https://doi.org/10.1007/11586821_10
https://doi.org/10.1007/11586821_10
https://doi.org/10.1007/11586821_10
https://doi.org/10.1007/978-3-030-64375-1_22
https://doi.org/10.1007/978-3-030-64375-1_22
https://doi.org/10.1007/978-3-030-64375-1_22
https://doi.org/10.1137/0215020
https://doi.org/10.1137/0215020
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1007/978-3-540-40061-5_26
https://arxiv.org/abs/1907.06381
http://arxiv.org/abs/1907.06381
http://arxiv.org/abs/1907.06381

40 Bibliography

[51] R. Ostrovsky and A. Wigderson. “One-way functions are essential for non-trivial zero-
knowledge”. In: [1993] The 2nd Israel Symposium on Theory and Computing Systems. 1993,
pp. 3–17. DOI: 10.1109/ISTCS.1993.253489.

[52] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards”. In: J. Cryptol. 4.3
(1991), pp. 161–174. DOI: 10.1007/BF00196725. URL: https://doi.org/10.1007/
BF00196725.

[53] Najmeh Soroush et al. “Verifiable Inner Product Encryption Scheme”. In: Public-Key Cryp-
tography - PKC 2020 - 23rd IACR International Conference on Practice and Theory of Public-
Key Cryptography, Edinburgh, UK, May 4-7, 2020, Proceedings, Part I. Ed. by Aggelos Ki-
ayias et al. Vol. 12110. Lecture Notes in Computer Science. Springer, 2020, pp. 65–94. DOI:
10.1007/978-3-030-45374-9_3. URL: https://doi.org/10.1007/978-3-030-
45374-9_3.

https://doi.org/10.1109/ISTCS.1993.253489
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/978-3-030-45374-9_3
https://doi.org/10.1007/978-3-030-45374-9_3
https://doi.org/10.1007/978-3-030-45374-9_3

41

Appendix

Appendix .A

Proof of Proposition ??

Prposition 3. If the DBDH assumption holds relative to GroupGen, then H1 and H2 are compu-
tationally indistinguishable.

Proof. The simulator B takes as input (g , A = gα,B = gβ,C = g τ, Z
?= e(g , gαβτ)) and interacts

with the adversary A impersonating the challenger.

SetUp phase. The adversary A sends two vectors −→x ,−→y to B. The simulator picks

Ω,k, ã,δb ,θb , w1,i , t1,i , f̃b,i , h̃b,i
$←−Z⋆p

for b = 1,2 and i ∈ [n]. Then, for each i ∈ [n], the simulator computes w2,i , t2,i such that:

Ω= δ1w2,i −δ2w1,i = θ1t2,i −θ2t1,i .

B computes the master public key components for b ∈ [2], i ∈ [n] as follows:

{Wb,i = g wb,i ,Fb,i = B xiδb · g f̃b,i ,Tb,i = g tb,i , Hb,i = B xiθb · g h̃b,i }b∈[2],i∈[n]

{Ub = gδb ,Vb = g θb }b∈[2],h = gΩ,Λ= e(A,B)−Ω ·e(A, g)ã ,K1 = Ak , K2 = B
−Ω

k · g
ã
k .

By doing so, B knows all secret parameters except { fb,i ,hb,i }b∈[2],i∈[n] which implicitly are set
fb,i = xiδbβ+ f̃b,i ,hb,i = xiθbβ+ h̃b,i . The following shows the simulator generates the well-
form master public key, with same distribution in both hybrids:

Λ= e(A,B)−Ω ·e(A, g)ã = e(gα, gβ)−Ω ·e(gα, g)ã = e(g , g−αβΩ+αã) ⇒ g ′ = g−αβΩ+αã ,

e(K1,K2) = e(Ak ,B
−Ω

k · g
ã
k) = e(A,B−Ω · g ã) =Λ.

Token query phase. First, notice that in the token query phase, A is allowed to ask the token
for some vectors −→v ∈ Zn

p such that cx = 〈⃗x, v⃗〉 ̸= 0. To generate a token for vector −→v , the simu-

lator first chooses random elements λ̃1, λ̃2,ri ,Φi
$←− Zp , for i = 1, . . . ,n and compute the token

components as follows:

{K3,i = g−δ2ri · (g λ̃1 · A−1/2cx)vi w2,i ,K4,i = gδ1ri−λ̃1vi w1,i · Avi w1,i /2cx }i∈[n],

{K5,i = g−θ2Φi · (g λ̃2 · A−1/2cx)vi t2,i ,K6,i = g θ1Φi−λ̃2vi t1,i · Avi t1,i /2cx }i∈[n],

KB =
n∏

i=1
g−(ri+Φi),K A =Ψ1 ·Ψ2 · Aã

which:

Ψ1 = B−λ̃1Ωcx ·
n∏

i=1
Fδ2ri

1,i F−δ1ri

2,i g−λ1vi (f̃1,i w2,i− f̃2,i w1,i)

42 Appendix

Ψ2 = B−λ̃2Ωcx ·
n∏

i=1
Hθ2Φi

1,i H−θ1Φi

2,i g−λ2vi (h̃1,i t2,i−h̃2,i t1,i)

Note that g λ̃1 · A−1/2cx = g λ̃1−α/2cx and g λ̃2 · A−1/2cx = g λ̃2−α/2cx , hence by defining λb = λ̃b −α/
(2cx) , for b = 1,2, we see {K j ,i } j=3,4,5,6,i∈[n] has the proper structure. For component K A consider
the following computation:

f1,i w2,i − f2,i w1,i = (xiδ1β+ f̃1,i)w2,i − (xiδ2β+ f̃2,i)w1,i =
xiβ(δ1w2,i −δ2w1,i)+ f̃1,i w2,i − f̃2,i w1,i =Ωxiβ+ (f̃1,i w2,i − f̃2,i w1,i)

⇒K
− f1,i

3,i K
− f2,i

4,i = g− f1,i (−δ2ri+vi w2,iλ1)− f2,i (δ1ri−vi w1,iλ1) =

= Fδ2ri

1,i F−δ1ri

2,i g
λ1vi

(
− f1,i w2,i+ f2,i w1,i

)
= Fδ2ri

1,i F−δ1ri

2,i g
−λ1vi

(
Ωxiβ+(f̃1,i w2,i− f̃2,i w1,i)

)
= Fδ2ri

1,i F−δ1ri

2,i g−λ1vi (f̃1,i w2,i− f̃2,i w1,i) · g−λ1viΩxiβ

⇒
n∏

i=1
K

− f1,i

3,i K
− f2,i

4,i =
n∏

i=1
Fδ2ri

1,i F−δ1ri

2,i g−λ1vi (f̃1,i w2,i− f̃2,i w1,i) · g−λ1Ωβ
∑n

i=1 vi xi

=
n∏

i=1
Fδ2ri

1,i F−δ1ri

2,i g−λ1vi (f̃1,i w2,i− f̃2,i w1,i) · g−(λ̃1−α/(2cx))Ωβ〈⃗x,v⃗〉

=
(n∏

i=1
Fδ2ri

1,i F−δ1ri

2,i g−λ1vi (f̃1,i w2,i− f̃2,i w1,i)
)
·B−λ̃1Ωcx

︸ ︷︷ ︸
Ψ1

·gΩαβ/2 =Ψ1 · gΩαβ/2

With same computation we conclude
∏n

i=1 K
−h1,i

5,i K
−h2,i

6,i =Ψ2 · gΩαβ/2 hence:

⇒ K A = g ′ ·
n∏

i=1
K

− f1,i

3,i K
− f2,i

4,i K
−h1,i

5,i K
−h2,i

6,i = g ′ ·Ψ1 · gΩαβ/2 ·Ψ2 · gΩαβ/2

=Ψ1 ·Ψ2 · g−αβΩ+αã · gαβΩ =Ψ1 ·Ψ2 · gαã =Ψ1 ·Ψ2 · Aã

Challenge phase. The simulator chooses random elements

s1, s̃2, s̃3, s̃4, s′1, s̃′2, s̃′3
$←−Z⋆p : s̃3 ̸= s̃′3

and implicitly define the new randomnesses:

s2 = τ+ s̃2, s2 = τ+ s̃′2, s3 =−βτ+ s̃3, s3 =−βτ+ s̃′3, s4 =−βτ+ s̃4

The challenge ciphertext is computed as follows (for i ∈ [n])

ct1 =C s̃2 = g τs̃2 ,ct′1 =C s̃′2 = g τs̃′2 ,ct2 = hs1 ,ct′2 = hs′1

ct3,i = g s1w̃1,i · g s̃2 f̃1,i ·B δ̃1xi s̃2 ·C f̃1,i · g δ̃1xi s̃3 , ct′3,i = g s′1w̃1,i ·C s̃′2 f̃1,i ·B δ̃1xi s̃′3

ct4,i = g s1w̃2,i ·C s̃2 f̃2,i ·B δ̃2xi s̃3 ,ct′4,i = g s′1w̃2,i ·C s̃′2 f̃2,i ·B δ̃2xi s̃′3

ct5,i = g s1 t̃1,i ·C s̃2h̃1,i Z θ̃1xi ,ct′5,i = g s′1 t̃1,i ·C s̃′2h̃1,i Z θ̃1xi

ct6,i = g s1 t̃2,i ·C s̃2h̃2,i Z θ̃2xi ,ct′6,i = g s′1 t̃2,i ·C s̃′2h̃2,i Z θ̃2xi

ct8 = Z Ω̃ ·e(A,C)−ã ·Λ−s̃2 ·m0,ct′8 = Z Ω̃ ·e(A,C)−ã ·Λ−s̃′2 ·m0

ct3,i =W s1
1,i ·F s2

1,i ·δ
xi s3
1 = g s1w1,i · g f1,i (s̃2+γ) · g xiδ1(−γβ+s̃3) = g s1w1,i · g f1,i s̃2 gγ(f1,i−xiδ1β) · g xiδ1 s̃3)

Appendix .A 43

=W s1
1,i · g s̃2(βδ̃1xi+ f̃1,i) · gγ(f1,i−xi δ̃1β) · g δ̃1xi s̃3 =W s1

1,i ·B s̃2δ1xi · g s̃2 f̃1,i ·C f̃1,i · gδ1xi s̃3

Same computation shows other components generated properly.

Analyzing the game: There exists two cases Z = e(g , g)αβτ or it is a random element inZp . Also
note,

Λ−s2 =Λ−τ−s̃2 = (e(A,B)−Ω ·e(A, g)ã)−τ ·Λ−s̃2 = e(h, g)αβτ ·e(A,C)−ã ·Λ−s̃2 ,

ct8 = ZΩ ·e(A,C)−ã ·Λ−s̃2 ·m0 = ZΩ ·Λ−s2 ·e(h, g)−αβτ ·m0 = ZΩe(h, g−αβτ) ·Λ−s2 ·m0

1. If Z = e(g , g)αβτ ⇒ ZΩ · e(h, g−αβτ) = e(h, gαβτ) · e(h, g−αβτ) = 1GT ct8 = Λ−s2 · m0 ⇒ A
interacts with H1

2. If Z is a random element then ct8 is also a random element hence A interact with H2

Proof of Proposition 1

Proposition 1. Under DLin assumption H2 and H3 are indistinguishable for all PPT adversaries.

Proof. The simulator takes as input:

(g , A = gα,B = gβ,C = g τ,D = gαη, Z
?= gβ(η+τ))

and by interacting with the adversary A, distinguish between gβ(η+τ) and a random element.

SetUp phase. The adversary A sends two vectors −→x ,−→y to B. The simulator picks g ′ $←− G and

δb ,θb , w̃1,i , t̃1,i , fb,i , h̃b,i ,Ω̃,r
$←− Z⋆p for b = 1,2 and i ∈ [n]. Then, for each i ∈ [n], the simulator

computes w2,i , t2,i such that:

Ω̃= δ1w̃2,i −δ2w̃1,i = θ1 t̃2,i −θ2 t̃1,i .

B computes the master public key components for b ∈ [2], i ∈ [n] as follows:

{Wb,i = Bδb xi Aw̃b,i ,Fb,i = g fb,i ,Tb,i = Bθb xi A t̃b,i , Hb,i = Bθb xi g h̃b,i }b∈[2],i∈[n]

{Ub = gδb ,Vb = g θb }b∈[2], ,h = AΩ̃,Λ= e(g , g ′),K1 = g k , K2 = g ′ 1
k .

The simulator knows exact value of { fb,i ,δb ,θb}i∈[n],b∈[2] and for the rest implicitly define the
secret parameters as follows:

wb,i =βδb xi +αw̃b,i , tb,i =βθb xi +αt̃b,i ,hb,i =βθb xi + h̃b,i ,Ω=αΩ̃

Observe that:

δ1w2,i −δ2w1,i = δ1(���βδ2xi +αw̃2,i)−δ2(���βδ1xi +αw̃1,i)

=α(w̃2,iδ1 −δ2w̃1,i)

=α(t̃2,iθ1 −θ2 t̃1,i)

= θ1t2,i −θ2t1,i

=αΩ̃
=Ω

Thus, the simulator generates the master public key as the real setup algorithm.

44 Appendix

Token query phase. The simulator chooses λ̃1, λ̃2, {r̃i ,Φ̃i }i∈[n]
$←− Z⋆p , and then implicitly de-

fines the following randomnesses:

λ1 =− λ̃2

α
+ λ̃1,λ2 = λ̃2

α
,ri =−βvi xi λ̃2

α
+ r̃i ,Φi = βvi xi λ̃2

α
+ Φ̃iα

By that setting the simulator generates the token as:

logg K3,i =−δ2ri +λ1vi w2,i =−δ2(−βvi xi λ̃2

α
+ r̃i)+ (− λ̃2

α
+ λ̃1)vi w2,i =

vi λ̃2

α
(xiδ2β−w2,i︸ ︷︷ ︸

−αw̃2,i

)−δ2r̃i + λ̃1vi w2,i =−vi λ̃2w̃2,i −δ2r̃i + λ̃1vi w2,i

⇒ K3,i = g−δ2ri · gλ1vi w2,i = g−δ2 r̃i · g−λ̃2vi w̃2,i ·W λ̃1vi

2,i ⇒ K3,i is computable

logg K5,i =−θ2Φi +λ2vi t2,i =−θ2(
βvi xi λ̃2

α
+ Φ̃i)+ (

λ̃2

α
)vi t2,i

=−vi λ̃2

α
(θ2βxi − t2,i︸ ︷︷ ︸

−αt̃2,i

)−θ2Φ̃i = vi λ̃2 t̃2,i −θ2Φ̃i

⇒ K5,i =g−θ2Φi · gλ2vi t2,i = g−θ2Φ̃i · g vi λ̃2 t̃2,i ⇒ K5,i is computable.

Same computation:K4,i = gδ1 r̃i · g λ̃1vi w̃1,i ·W −λ̃1vi

1,i ,K6,i = g θ1Φ̃i g−λ̃2vi t̃1,i

KB =
n∏

i=1
g−(ri+Φi) =

n∏
i=1

g−(− βvi xi λ̃2
α

+r̃i+ βvi xi λ̃2
α

+Φ̃i) =
n∏

i=1
g−(r̃i+Φ̃i)

To compute K A notice that the simulator knows fb,i hence
∏n

i=1 K
− f1,i

3,i K
− f2,i

4,i is computable. For

the remaining part K
−h1,i

5,i K
−h2,i

6,i , consider the following:

K
−h1,i

5,i K
−h2,i

6,i = g h1,iθ2Φ̃i g−h1,i λ̃2vi t̃2,i g−h2,iθ1Φ̃i g h2,i λ̃2vi t̃1,i

= Hθ2Φ̃i

1,i ·H
−λ̃2vi t̃2,i

1,i H−θ1Φ̃i

2,i ·H
λ̃2vi t̃1,i

2,i ⇒ K
−h1,i

5,i K
−h2,i

6,i is computable

This shows that the simulator can compute the token as the real challenger.

Challenge Phase: To generate the ciphertext, B chooses random elements

s̃1, . . . , s̃3, s̃′1, . . . , s̃′3
$←−Z⋆p : s̃3 ̸= s̃′3

and computes the challenge ciphertext as follows:

•ct1 =C · g s̃2 = g τ+s̃2 ⇒ s2 = τ+ s̃2,

•ct′1 =C · g s̃′2 = g τ+s̃′2 ⇒ s′2 = τ+ s̃2

•ct2 = DΩ̃ · AΩ̃s̃1 = (gαΩ̃)(η+s̃1) = hη+s̃1 ⇒ s1 = η+ s̃1

•ct′2 = DΩ̃ · AΩ̃s̃′1 ⇒ s′1 = η+ s̃′1
•ct3,i =W s̃1

1,i ·F s̃2
1,i ·U

s̃3xi
1 ·D w̃1,i ·C f1,i =W s̃1

1,i ·F s̃2+τ
1,i ·U s̃3xi

1 · gηαw̃1,i ·F τ
1,i =

=W s̃1
1,i ·F s̃2+τ

1,i ·U s̃3xi
1 · gη(w1,i−βδ1xi) =W s̃1+η

1,i ·F s̃2+τ
1,i ·U (s̃3−ηβ)xi

1 ⇒ s3 =−ηβ+ s̃3

Appendix .A 45

•ct4,i =W s̃1
2,i ·F s̃2

2,i ·U
s̃3xi
2 ·D w̃2,i ·C f2,i , (similar computation as ct3,i)

and,

•ct′3,i =W
s̃′1

1,i ·F
s̃′2
1,i ·U

s̃′3xi

1 ·D w̃1,i ·C f1,i

•ct′4,i =W
s̃′1

2,i ·F
s̃′2
2,i ·U

s̃′3xi

2 ·D w̃2,i ·C f2,i

•ct5,i = T s̃1
1,i ·D t̃1,i ·H s̃2

1,i ·C h̃1,i ·Z θ1xi ,

•ct′5,i = T
s̃′1
1,i ·D t̃1,i ·H

s̃′2
1,i ·C h̃1,i ·Z kθ1xi

•ct6,i = T s̃1
2,i ·D t̃2,i ·H s̃2

2,i ·C h̃2,i ·Z θ2xi ,

•ct′6,i = T
s̃′1
2,i ·D t̃2,i ·H

s̃′2
2,i ·C h̃2,i ·Z θ2xi

Analysis the game: First, notice that:

D t̃1,i = gηαt̃1,i = gη(t1,i−βθ1 yi) = T η

1,i · g−βηθ1 yi ,D t̃1,i = T η

1,i · g−kβηθ1 yi

C h̃1,i = g τ(h1,i−βθ1 yi) = Hτ
1,i · g−βτθ1 yi ,C h̃1,i = Hτ

1,i · g−βτθ1 yi

⇒
ct5,i = T s̃1

1,i ·D t̃1,i ·H s̃2
1,i ·C h̃1,i ·Z θ1 yi =

= T s̃1
1,i ·T η

1,i · g−βηθ1 yi ·H s̃2
1,i ·Hτ

1,i · g−βτθ1 yi ·Z θ1 y⃗i

= T η+s̃1

1,i ·Hτ+s̃2
1,i · (g−β(τ+η) ·Z)θ1 yi = T s1

1,i ·H s2
1,i · (g−β(τ+η) ·Z)θ1 yi

ct′5,i = T
s′1
1,i ·H

s′2
1,i · (g−β(τ+η) ·Z)θ1 yi

If Z = gβ(η+τ) ⇒
g−β(τ+η) ·Z = 1G⇒ ct5,i = T s1

1,i ·H s2
1,i

g (−β(τ+η) ·Z = 1G⇒ ct5,i = T
s′1
1,i ·H

s′2
1,i

⇒ The adversary interact with hybrid H3

If Z = g r ⇒
g−β(τ+η) ·Z = g r−β(τ+η) s4=r−β(τ+η)−−−−−−−−−→ ct5,i = T s1

1,i ·H s2
1,i ·U

s4 yi

1

g (−β(τ+η) ·Z = g r ′ ⇒ ct5,i = T
s′1
1,i ·H

s′2
1,i ·U

r ′yi

1

⇒ The adversary interact with hybrid H2

Proof of Proposition 2

Proposition 2. Under DLin assumption H3 and H4 are indistinguishable for all PPT adversaries
A.

Proof. The simulator takes as input (g , A = gα,B = gβ,C = g τ,D = gαη, Z
?= gβ(η+τ)) and by inter-

acting with the adversary A, distinguish between gβ(η+τ) and a random element.

SetUp phase. Generating master public key is same as in 1, except that instead of−→x = (x1, . . . , xn)
we use −→y = (y1, . . . , yn) to compute {Tb,i , Hb,i }i∈[n]:

{Wb,i = Bδb xi Aw̃b,i ,Fb,i = g fb,i ,Tb,i = Bθb yi A t̃b,i , Hb,i = Bθb yi g h̃b,i }b∈[2],i∈[n]

46 Appendix

{Ub = gδb ,Vb = g θb }b∈[2], ,h = AΩ̃,Λ= e(g , g ′),K1 = g k , K2 = g ′ 1
k .

Which means the simulator implicitly defines:

wb,i =βδb xi +αw̃b,i , tb,i =βθb yi +αt̃b,i ,hb,i =βθb yi + h̃b,i ,Ω=αΩ̃

Proving that the simulator generates the master public key, with the distribution same as a real
challenger is same as 1.

Token query phase. The simulator chooses λ̃1, λ̃2, {r̃i ,Φ̃i }i∈[n]
$←− Z⋆p , and then implicitly de-

fines the following randomnesses:

λ1 = λ̃1 −
cy λ̃2

α
, λ2 = cx λ̃2

α
, ri = r̃i −

cyβvi xi λ̃2

α
, Φi = Φ̃i + cxβvi yi λ̃2

α

The following computation shows the simulator can compute the token without knowing the
exact value of the randomnesses:

logg K3,i =−δ2ri +λ1vi w2,i =−δ2(r̃i −
cyβvi xi λ̃2

α
)+ (λ̃1 −

cy λ̃2

α
)vi w2,i

=−δ2r̃i +
cy λ̃2

α
vi (βxi −w2,i︸ ︷︷ ︸

αw̃2,i

)+ λ̃1vi w2,i =−δ2r̃i + cy λ̃2vi w̃2,i + λ̃1vi w2,i =

⇒ K3,i = g−δ2 r̃i · g cy λ̃2vi w̃2,i ·W λ̃1vi

2,i ⇒ K3,i is compuatble

logg K5,i =−θ2Φi +λ2vi t2,i =−θ2(Φ̃i + cxβvi yi λ̃2

α
)+ cx λ̃2

α
vi t2,i =−θ2Φ̃i + cx vi λ̃2

α
(t2,i −θ2βyi︸ ︷︷ ︸

αt̃2,i

) =

⇒ K5,i = g−θ2Φ̃i · g cx λ̃2vi t̃2,i ⇒ K5,i is compuatble

Similar computation ⇒ K4,i = gδ1 r̃i · g−cy λ̃2vi w̃1,i ·W −λ̃1vi

1,i ,K6,i = g θ1Φ̃i · g−cx λ̃2vi t̃1,i

K A = g ′ ·
n∏

i=1
K

− f1,i

3,i K
− f2,i

4,i K
−h1,i

5,i K
−h2,i

6,i = g ′ ·
n∏

i=1
K

− f1,i

3,i K
− f2,i

4,i K
−βθ1 yi−h̃1,i

5,i K
−βθ2 yi+h̃2,i

6,i

= g ′ ·
n∏

i=1
K

− f1,i

3,i K
− f2,i

4,i K
−h̃1,i

5,i K
−h̃2,i

6,i (��
��

g−θ2Φi gλ2vi t2,i)−βθ1 yi (��
��

g−θ1Φi gλ2vi t1,i)−βθ2 yi

= g ′ ·
n∏

i=1
K

− f1,i

3,i K
− f2,i

4,i K
−h̃1,i

5,i K
−h̃2,i

6,i g−λ2viβyi (t2,iθ1−t1,iθ2)

= g ′ ·
n∏

i=1
K

− f1,i

3,i K
− f2,i

4,i K
−h̃1,i

5,i K
−h̃2,i

6,i B−λ̃2vi yi Ω̃⇒ K A is computable

KB =
n∏

i=1
g−(ri+Φi) =

n∏
i=1

g−r̃i+ cy λ̃2 vi xi β

α
−Φ̃i− cx λ̃2 vi yi β

α =
n∏

i=1
g−(r̃i+Φ̃i)+ cy λ̃2β

α
(cy vi xi−cx vi yi) =

= g−∑n
i=1(r̃i+Φ̃i)g

λ̃2β
α

(cx
∑n

i=1 vi yi−cy
∑n

i=1 vi xi) =
n∏

i=1
g−(r̃i+Φ̃i) · g

λ̃2β
α

(cy cx−cx cy) =
n∏

i=1
g−(r̃i+Φ̃i)

This shows that the simulator can compute the token as the real challenger.

Generating the challenge ciphertext. Simulator does the exact steps as in 1 to generate the
challenge ciphertext for all components except ct5,i ,ct6,i ,ct′5,i ,ct′6,i , which instead {xi }i puts {yi }i

as power of Z :

Appendix .B 47

ct5,i = T s̃1
1,i ·D t̃1,i ·H s̃2

1,i ·C h̃1,i ·Z θ1 yi ct6,i = T s̃1
2,i ·D t̃2,i ·H s̃2

2,i ·C h̃2,i ·Z θ2 yi

ct′5,i = T
s̃′1
1,i ·D t̃1,i ·H

s̃′2
1,i ·C h̃1,i ·Z θ1 yi ct′6,i = T

s̃′1
2,i ·D t̃2,i ·H

s̃′2
2,i ·C h̃2,i ·Z θ2 yi

Analysis the game:

• If Z = gβ(η+τ) ⇒ ct5,i = T s1
1,i H s2

1,i Z−θ1 yi Z θ1 yi = T s1
1,i H s2

1,i ⇒A interacts with hybrid H3

• If Z = g r ⇒ ct5,i = T s1
1,i H s2

1,i · g−β(η+τ)θ1 yi · g θ1 yi r = T s1
1,i H s2

1,i · g (r−β(η+τ))θ1 yi

s4=r−β(η+τ)̸=0−−−−−−−−−−−→ ct5,i = T s1
1,i H s3

1,i V s4 yi

1 which is hybrid H4

Appendix .B

Groth-Sahai Pairing product Equation for BGN relation

Using the Groth-Sahai proof technique we have the following equation for the relation Rballot

defined in ??:
Variables:

M= g vote,Mi = g votei
,X = g crd,Ai = g âi

,CAi =CAi ,

M̂= hrv ,M̂i = hri ,X̂ = hrcrd ,Âi = hr′i , ˆCAi = hr∗i

Equation

e(CTvote, g) = e(g vote ·hrv , g) = e(M, g) ·e(M̂, g)

e(CTcrd, g) = e(g crd ·hrcrd , g) = e(X , g) ·e(X̂ , g)

for i = 1, . . . ,k :

e(CAi , g) = e(g âi ·hr′i , g) = e(Ai , g) ·e(Âi , g)

e(CAi , g) = e(g âi
, g) = e(g âi−1

, g â) = e(Ai−1,A1)

e(CA∗
i , g) = e(CAi ·hr∗i , g) = e(CAi , g) ·e(ˆCAi , g)

e(Mk , g2) ·e(Mk−1, g2)p1 · . . . ·e(M1, g2)pk−1 ·e(g1, g2)pk = 1GT

for i = 1,2, . . . ,m :

e(Mi , g) ·e(Mi−1,M)−1 = 1GT

(15)

Notice that to prove the validity of the encrypted vote, vote ∈ cList = {c1, . . . ,cm} the voter is re-
quired to prove:

CTvote =Enc(vote),vote ∈ cList
Or equivalently prove that:

CTvote =Enc(vote) :PolyC (vote) = 0

48 Appendix

Where the polynomial PolyC is defined as follows:

PolyC =
m∏

i=1
(x −ci) =

m∑
i=0

ci xi

	A Brief Survey on Zero-Knowledge Proof Systems
	Zero-Knowledge proof Systems
	Zero-Knowledge Proof System for NP-language
	Zero-Knowledge Proof Systems; Variants
	Simulator with Auxiliary Input
	Perfect, Statistical, Computational ZK
	Expected Polynomial-Time Simulators
	Knowledge Tightness
	Arguments; Computationally Sound ZK

	Proof of Knowledge
	Sigma Protocol
	Composing Zero-Knowledge Proof Systems
	Sequential Composition
	Parallel Composition

	Witness Indistinguishable and Witness Hiding Proof System
	Witness Indistinguishability
	Witness Hiding

	Non-Interactive Zero Knowledge Proof Systems
	NIZK in RHB Model
	NIZK in CRS Model
	NIZK for NP-Language
	Fiat-Shamir Heuristic
	Designated Verifier Zero-Knowledge Proof Systems
	Implicit Zero-Knowledge Proof Systems

	Non-Algebraic Language; Rang-Proof and Proof of Shuffle

	Non-Interactive Witness Indistinguishable Proof Systems
	NIWI; Formal Definitions

	Groth Sahai NIWI proof System
	Groth-Sahai Technique; Overview
	Formal Description
	Groth-Sahai NIWI Proofs
	Set Up

	Instantiation Based on the DLin Assumption
	OR Statements

	Bibliography
	Appendix
	Appendix .A
	Proof of Proposition ??
	Proof of Proposition 1
	Proof of Proposition 2

	Appendix .B
	Groth-Sahai Pairing product Equation for BGN relation

