

PhD-FSTM-2022-029

The Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 22/03/2022 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Najmeh SOROUSH

VERIFIABLE, SECURE AND PRIVACY-PRESERVING

COMPUTATION

Dissertation defence committee

Dr Peter Y.A. Ryan, dissertation supervisor
Professor, Université du Luxembourg

Dr Ivan Visconti,
Professor, Université du Salerno, Italy

Dr Olivier Pereira,
Professor, Université Catholique de Louvain

Dr Gabriele Lenzini, Chairman
Professor, Université du Luxembourg

Dr Peter B. Rønne,Vice Chairman
Polish Academy of Sciences

2

Abstract

In this thesis, I present the research I conducted with my co-authors on numerous areas of
verifiable, secure, and privacy-preserving computation during my doctoral studies at the Uni-
versity of Luxembourg, where Professor Peter Ryan advised me.

In the first part, I study the functional encryption scheme. In the standard setting of func-
tional encryption, it is assumed both the Central Authority (CA) and the encryptors to run their
respective algorithms faithfully. However, in the case of dishonest parties, the security of the
cryptosystem may be violated. It means that dishonest parties can cause inconsistent results
which may not be detected. In the first part, we improve on this situation by considering Inner-
Product Encryption (IPE), a special case of functional encryption and a primitive that has at-
tracted wide interest from practitioners and researchers in the last decade. Specifically, we con-
struct the first efficient verifiable Inner Product Encryption (VIPE) scheme according to the
inner-product functionality. As the next step, we construct a verifiable IPE that satisfies uncon-
ditional verifiability, whereas privacy relies on the standard assumption.

The second part of this thesis presents my research on e-voting protocols. I revisit the coercion-
resistant e-voting protocol by Juels, Catalano and Jakobsson (JCJ) and, particularly, the attempts
to make it usable and practical. In JCJ the user needs to handle cryptographic credentials and
fake these in case of coercion. We present a hardware-independent protocol that can be imple-
mented using a combination of a digitally stored cryptographic length key and a PIN only known
by the voter. The long credential could be stored in several places or hidden via steganography.
At the ballot casting phase, the software will input the digital key and the password to form the
credential submitted with the vote. Depending on the level of coercion, the coerced voter can
either fake the long credential or, for stronger levels of coercion, the voter can reveal the digi-
tally stored credential to the coercer but fake the PIN. Due to our improved tally, the coercer will
not know if he got faked credentials or PINs. On the other hand, since the voter memories the
PIN is a high chance of users making a PIN typo error which will invalidate the vote and remain
undetected. Note that naively giving feedback on the correctness of the PIN is not possible for
coercion-resistance as it would allow the coercer to check whether he got a fake PIN or not. In-
stead, we will define a set of allowed PIN errors (e.g., chosen by the election administrator). We
will consider a ballot valid if it has a correct PIN or an allowed PIN error but invalid for other
PINs. At the tally phase, we construct protocols that secretly check whether a given PIN is in the
set of allowed PINs and will sort out invalid ballots.

We also design another End-to-End verifiable e-voting scheme achieving coercion-resistance
via deniable vote updating. We propose a new e-voting system that enables voters with an in-
tuitive mechanism to update their possibly coerced vote in a deniable way. What is more, our
e-voting system does not introduce any additional trust assumptions for end-to-end verifiability
and vote privacy besides the standards. Moreover, we demonstrate that our e-voting system can
be instantiated efficiently for practical elections. With these properties, our e-voting system has
the potential to close the gap between theory and practice in coercion-resistant e-voting.

3

Acknowledgements
Without the help and support of many people, this research would not have been accom-

plished. At the end of my journey as a PhD student, I try to express my gratitude to everyone
who has supported me academically and otherwise.

First and foremost, I would like to thank my supervisor, Peter Y. A. Ryan, for accepting me
as his student, giving me the opportunity to work for the APSIA group and, his advice and
guidance during my studies. Most importantly, I would like to express my gratitude to him
for his consistent support throughout the past four years.

I would like to thank Peter B. Roenne for patiently supervising me during the last years of
my PhD. When it came to my ideas and details, he always pushed me to be as detailed as
possible. Without this encouragement, my work would have been less precise in terms of
scientific research. I admire his attention to all the detail and thoroughness, and I appre-
ciate his patience in dealing with my mistakes.

My first steps into cryptography and research were guided by Vincenzo Iovino. I would
also thank Vincenzo for supervising me during the first two years of my PhD. I would like
to thank him for sharing his idea with me and putting his trust in me to work on it.

I thank Dimiter Ostrev. Working with him and his research attitude made me realize that I
have to organize my mind and my idea when it come to the research. Dimiter is someone
who is always a pleasure to work with.

I would also like to thank Alfredo Rial for patiently reading my long messy proof and guid-
ing me through my first publication.

I am grateful to Johannes Müller for all the support, advice and worthwhile discussions
while working together. I especially appreciate his early remarks and suggestions on my
thesis.

I would also like to thank my jury members, Gabriele Lenzini, Ivan Visconti, Olivier Pereira
and Peter Roenne for agreeing to evaluate my thesis. I thank both Ivan and Peter for our
yearly CET meetings and their constructive feedbacks.

Research endeavours rarely happen without collaboration I would like to thank my col-
laborators and co-authors. Fatima El Orche, Ehsan Estaji, Kristian Gjøsteen, Thomas
Haines, Vincenzo Iovino, Johannes Muller, Dimiter Ostrev, Balazs Pejo, Ivan Pryvalov,
Alfredo Rial, Peter B. Roenne, Peter Y. A. Ryan and Philip B. Stark.

I would thank Naira Bardasaryan, Jessica Giro, Natalie Kirf, Magali Martin and Cather-
ine Violet for their administrative support.

I would like to thank Ehsan for being a good colleague and friend. Apart from collabora-
tion, his company accelerated my learning process when I began exploring e-voting.

I thank Afonso, Alireza, Georgos, Giuseppe, Ivan, Marjan, Rafieh, and Yan for their kindly
help and support while I was writing my thesis, proofreading this manuscript and finding
a much too high number of extra-camas!

I thank my office mate Jeroen for enduring my plants and messiness, it truly helped me
feel comfortable in our office.

4

Beyond our work together, I also thank the APSIA group for fun and interesting conver-
sations around tea, coffee or a Kwak beer: Aditya, Afonso, David, Ehsan, Ehsan, Fatima,
Georgios, Hao, Ivan, Jeroen, Johannes, Marie-Laure, Marjan, Masoud, Petra, Rafieh, Wo-
jciech and Yan.

I would like to thank my family and dear friends in Khooneye Sohharabina and Leila who
helped me start with my beloved journey. Without their support and encouragement, I
could not have started my path.

And above all, I would like to express my deep gratitude to Shohreh and Zohreh, for mak-
ing me feel at home here.

Finally, I would like to gratefully acknowledge the generous funding of my Ph.D. by the
Fonds National de la Recherche (FNR, Luxembourg National Research Fund) via the Uni-
versity of Luxembourg.

5

To the goldfish in Belval pond,

my companions, while my mind was wandering!

To M . M,

for inspiration!

1

Contents

1 Introduction 5
1.1 Modern Cryptography . 6

1.1.1 The Dawn of the Public Key Encryption Scheme 7
1.2 Towards Advanced Cryptography . 7

1.2.1 Zero-Knowledge Proof Systems . 8
1.2.2 Fine Grained Access to Information . 9
1.2.3 Inner Product Encryption Scheme . 10

1.3 Verifiability in the Context of Functional Encryption 11
1.4 Verifiable Secure E-Voting Protocols . 12

1.4.1 Privacy in the context of E-Voting . 13
1.4.2 Verifiability in the Context of E-Voting . 14

1.5 Contributions and Outline of Thesis . 14
1.5.1 Perfect Inner Product Encryption Scheme . 15
1.5.2 Revisiting Practical and Usable Coercion-Resistant E-Voting 18
1.5.3 Deniable Vote Updating . 20
1.5.4 Risk-Limiting Tallies . 21
1.5.5 Outline . 21

I Verifiable Functional Encryption Schemes 23

2 Building Blocks; Verifiable Functional Encryption Schemes 25
2.1 Mathematical Notions and Notations . 26
2.2 Algorithms . 28
2.3 A Background from Complexity Theory . 29

2.3.1 P, NP and PSPACE . 29
2.3.2 Interactive Proof Systems . 31

2.4 Provable Security . 32
2.4.1 Computational Secrecy . 33
2.4.2 Simulation-Based Security . 34
2.4.3 Game-Based Security . 35

2.5 One Way Functions . 36
2.6 Computational Assumptions . 39

2.6.1 Factorization-Based Assumptions . 39
2.6.2 Discrete Logarithm-Based Assumptions . 39

2.7 Cryptographic Primitives . 41
2.7.1 Commitment Scheme . 41
2.7.2 Public Key Encryption Schemes . 43
2.7.3 Hash Functions . 50
2.7.4 Signature Schemes . 51

2 Contents

3 A Brief Survey on Zero-Knowledge Proof Systems 53
3.1 Zero-Knowledge proof Systems . 55
3.2 Zero-Knowledge Proof System for NP-language . 57
3.3 Zero-Knowledge Proof Systems; Variants . 58

3.3.1 Simulator with Auxiliary Input . 58
3.3.2 Perfect, Statistical, Computational ZK . 58
3.3.3 Expected Polynomial-Time Simulators . 59
3.3.4 Knowledge Tightness . 59
3.3.5 Arguments; Computationally Sound ZK . 60

3.4 Proof of Knowledge . 60
3.5 Sigma Protocol . 61
3.6 Composing Zero-Knowledge Proof Systems . 63

3.6.1 Sequential Composition . 63
3.6.2 Parallel Composition . 64

3.7 Witness Indistinguishable and Witness Hiding Proof System 65
3.7.1 Witness Indistinguishability . 65
3.7.2 Witness Hiding . 65

3.8 Non-Interactive Zero Knowledge Proof Systems . 66
3.8.1 NIZK in RHB Model . 67
3.8.2 NIZK in CRS Model . 68
3.8.3 NIZK for NP-Language . 69
3.8.4 Fiat-Shamir Heuristic . 70
3.8.5 Designated Verifier Zero-Knowledge Proof Systems 70
3.8.6 Non-Algebraic Language; Rang-Proof and Proof of Shuffle 72

3.9 Non-Interactive Witness Indistinguishable Proof Systems 72
3.9.1 NIWI; Formal Definitions . 73

3.10 Groth Sahai NIWI proof System . 75
3.10.1 Groth-Sahai Technique; Overview . 76
3.10.2 Formal Description . 78
3.10.3 Groth-Sahai NIWI Proofs . 80
3.10.4 Set Up . 80

3.11 Instantiation Based on the DLin Assumption . 81
3.12 OR Statements . 85

4 Perfect Inner Product Encryption Schemes 89
4.1 Functional Encryption Scheme . 90

4.1.1 Introduction . 90
4.2 Functional Encryption; Formal Definition . 91

4.2.1 Security Notions in the Context of FE . 92
4.3 Sub Classes of Functional Encryption Scheme . 96

4.3.1 Identity-Based Encryption Scheme . 96
4.3.2 Predicate Encryption Scheme . 97
4.3.3 Attribute-Based Encryption Scheme . 97
4.3.4 Hidden Vector Encryption Scheme . 98

4.4 Inner Product Encryption Scheme . 99
4.4.1 IPE; Variants . 100

4.5 Technical Overview . 101
4.5.1 Verification Algorithms . 101
4.5.2 Achieving Perfect Correctness . 102
4.5.3 IPE; Formal Definition . 104
4.5.4 Security Notion for IPE . 106

Contents 3

4.6 Perfectly Correct IPE . 106
4.6.1 Perfect Correctness Property . 109

4.7 Security Proof . 110

5 Verifiable IPE 119
5.1 Introduction and Research Question . 120
5.2 Motivating Applications . 121

5.2.1 Perfectly Binding Polynomial Commitments 121
5.3 Verifiability in the Context of Functional Encryption 122

5.3.1 Security Notion of VFE . 123
5.4 VIP Relations . 124
5.5 Our Verifiable Inner Product Encryption Scheme . 126
5.6 NIWI Proofs and Verification Algorithms . 128

5.6.1 Master Public Key Verification . 128
5.6.2 Token Verification Algorithm . 129
5.6.3 NIWI-Proof for Encryption Algorithm . 131

5.7 Conclusion . 134

II Verifiable Secure E-Voting Protocols 135

6 Building Blocks; Verifiable E-Voting Protocols 139
6.1 Introduction . 140

6.1.1 Protocol Participants and Procedures . 140
6.1.2 Security Notions in the Context of E-Voting Protocols 142

6.2 Formal Definitions . 143
6.2.1 Computational Model . 143
6.2.2 Coercion-Resistance . 145
6.2.3 Privacy . 146
6.2.4 Receipt-Freeness . 146

6.3 Verifiability in the Context of E-Voting Protocol . 147
6.3.1 Verifiability; Formal Definition . 147

6.4 Simulation-Based Security in E-Voting Protocol . 149
6.4.1 bPRIV Property . 149
6.4.2 Strong Consistency . 150
6.4.3 Strong Correctness . 152

7 Practical and Usable Coercion-Resistant Remote E-Voting 155
7.1 Research Question and Our Contribution . 156
7.2 Introduction . 156
7.3 A Brief Overview of NV12 . 158
7.4 Pin-Based JCJ E-Voting Protocol . 160

7.4.1 The Intuition Behind the PIN . 160
7.5 Protocol Description; Participants, Primitives and Framework 161

7.5.1 Protocol Participants . 161
7.5.2 Cryptographic Primitives . 162
7.5.3 Protocol Framework . 163
7.5.4 Protocol Instantiations . 165

7.6 Instantiation with Paillier Cryptosystem . 165
7.7 Instantiation with BGN cryptosystem . 171
7.8 Instantiation with Functional Encryption Scheme . 175
7.9 Security Analysis . 179

4 Contents

7.9.1 Security Model . 179
7.9.2 Privacy Proof . 180
7.9.3 Strong Consistency Property . 183
7.9.4 Strong Correctness Property . 187
7.9.5 Verifiability . 188

7.10 Conclusion . 191

8 A New Technique for Deniable Vote Updating 193
8.1 Introduction . 194
8.2 Related work . 194

8.2.1 Our Contributions . 196
8.3 Overview of DeVoS . 196

8.3.1 Main Idea . 196
8.4 Protocol Description; Participants, Primitives and Framework 197

8.4.1 Protocol Participants . 197
8.4.2 Cryptographic Primitives . 197
8.4.3 Protocol Framework . 199

8.5 Protocol Instantiation . 201
8.5.1 Instantiation with Bilinear Groups . 202
8.5.2 Instantiation with Exponential ElGamal . 205

8.6 DeVoS; Security Properties . 208
8.6.1 Security Model . 208
8.6.2 Privacy . 209
8.6.3 Intuitive Counter-Strategy . 209
8.6.4 Coercion Threat Model . 210
8.6.5 Verifiability . 210

9 Risk-Limiting Tallies 215
9.1 Introduction . 216
9.2 Masking Complex Ballots . 218
9.3 Partially Masked RLTs and RLVs . 219

9.3.1 Selene . 219
9.3.2 RLTs and Verification with Partially Masked Ballots 222

9.4 Distinguishing Distance . 223
9.5 Quantitative Privacy-Type Properties . 224

9.5.1 Privacy . 224
9.5.2 Coercion-Resistance and No Deniability . 225
9.5.3 Receipt-Freeness . 227

9.6 Conclusion . 228

Bibliography 229

Appendix 255
Appendix .A . 255

Proof of Proposition 3 . 255
Proof of Proposition 7 . 257
Proof of Proposition 8 . 260

Appendix .B . 261
Groth-Sahai Pairing product Equation for BGN relation 261

5

Chapter 1

Introduction

“ Once Upon a Time,
there was a mystery”

Our story goes back far away, thousands of years ago, ancient Greece, ancient
Rome, to Julius Caesar,

“If he had anything confidential to say, he wrote it
in cipher, that is, by so changing the order of the
letters of the alphabet, that not a word could be
made out. If anyone wishes to decipher these, and
get at their meaning, he must substitute the fourth
letter of the alphabet, namely D, for A, and so with
the others.” 1

And although he sadly was assassinated in Senate House of Pompey in Ides of
March of 44 BC, the cryptographic adventure has been going on. That, after all,
was only the beginning!

Contents
1.1 Modern Cryptography . 6

1.1.1 The Dawn of the Public Key Encryption Scheme 7

1.2 Towards Advanced Cryptography . 7

1.2.1 Zero-Knowledge Proof Systems . 8

1.2.2 Fine Grained Access to Information . 9

1.2.3 Inner Product Encryption Scheme . 10

1.3 Verifiability in the Context of Functional Encryption 11

1.4 Verifiable Secure E-Voting Protocols . 12

1.4.1 Privacy in the context of E-Voting . 13

1.4.2 Verifiability in the Context of E-Voting . 14

1.5 Contributions and Outline of Thesis . 14

1.5.1 Perfect Inner Product Encryption Scheme 15

1.5.2 Revisiting Practical and Usable Coercion-Resistant E-Voting 18

1.5.3 Deniable Vote Updating . 20

1.5.4 Risk-Limiting Tallies . 21

1.5.5 Outline . 21

6 Chapter 1. Introduction

For a long time, the primary goal of cryptography, classified into classical and mod-
ern cryptography, was executing secure communications over an insecure channel be-
tween a sender and receiver. Furthermore, to establish a secure connection, the parties
must agree on a secret key in advance or rely on a third entity for key distribution.

From a classical standpoint, cryptography is viewed as an art rather than a science.
Back then, because of the lack of precise definitions, mathematical methods, and con-
ceptual foundations, developing practical cryptosystems required creativity. Two well-
known examples of classical cryptography are Caesar’s cipher and the Enigma machine.

One of the oldest cryptography methods goes back to Julius Caesar. Coming from
ancient history books1, Julius Caesar invented an encryption method by shifting the
letters of the alphabet three places forward: a became D, z became C, and so on. The
receiver with the knowledge of the secret value, 3, easily replaced each letter with a letter
three positions backwards to recover the original message.

Another well-known example is the Enigma Machine, a cipher device that Nazi Ger-
many widely used during WWII. Despite the Germans’ belief that the Enigma machine
was so secure that it could transmit the most sensitive information, it was broken in
1932 by a team of mathematicians and cryptanalysts at the Polish Cipher Bureau. An-
other successful attempt to break more recent versions occurred at Bletchley Park in the
United Kingdom. To decipher Enigma, the Bletchley team, led by Alan Turing, designed
a decryption electro-mechanical device, Bombe, that can be considered, among other
electro-mechanical encrypting devices, the earliest prototype of what would become
the modern computer we know today.

The history of breaking the cryptosystems that had been known as robust and secure
schemes led to the development of cryptography from an art into a science, namely
“Modern Cryptography.”

1.1 Modern Cryptography

The fundamental paper by Claude E. Shannon, “Communication Theory and Secrecy
Systems” [237] published in 1949, is widely regarded as the foundation of modern cryp-
tography. Shannon proposed a formal mathematical definition for perfect secrecy, also
known as “Information-theoretic secrecy”, which asserts that no one can gain knowl-
edge from the ciphertext. Shannon also proved the existence of a perfectly secure cryp-
tosystem by showing that the One-Time Pad Encryption Scheme, introduced by GS Ver-
nam [252] in 1926, has perfect secrecy.

However, his work put an end to the possibility of designing a perfectly secure cryp-
tosystem in the real world. He proved that in any cryptosystem, the secret key must be
as long as the message itself to generate a ciphertext that properly hides all information
about the message; moreover, the key cannot be used more than once.

Following that, a novel definition, “Computational Secrecy,” was presented to by-
pass the inherent limitation of a perfect secrecy notion. In contrast to the information-
theoretic concept of secrecy, the definition of computational security incorporates two
modifications: first, considering effective adversaries that run for some feasible amount
of time and, secondly, allowing the adversary to break the scheme with negligible (very
small) probability. Put simply; a cryptosystem is computationally secure if an efficient
adversary cannot gain any knowledge from the ciphertext in a reasonable amount of
time except for negligible probability.

1Suetonius, Life of Julius Caesar

1.2. Towards Advanced Cryptography 7

As modern cryptography requires, the terms “efficiency” and “small probability” have
been precisely defined with the help of mathematics and complexity theory concepts.
In simple words, an efficient algorithm takes some value with length ℓ as input, and
it terminates in a time and space polynomial in ℓ. A value is negligible in terms of ℓ
when it is smaller than the absolute value of any inverse polynomial in ℓ. In addition to
explicit terms such as efficiency, the definition of computational secrecy also indicates
some subtle concepts. For example: what does it means for an adversary to break a
secure protocol? Recover the private key or recover only the original message from the
ciphertext? These notions also require precise and consistent definitions.

In the early years of modern cryptography, encryption schemes continued to have
the same classical framework and syntax. Namely, most secure protocols were designed
based on a secret key shared between the sender, Alice, and the receiver, Bob, and they
guarantee the following three main purposes. They provide:

However, secure cryptosystems based on the shared secret key has their shortcom-
ings, including challenges arising from secure key-distribution solutions and, in the fol-
lowing step, storing and managing a large number of keys. These concerns became
more severe as technology advanced, particularly in telecommunications and computer
science, which encouraged cryptographers to launch a new line of research into devel-
oping practical and secure key-exchange protocols. This led to the ground-breaking
results: discovery of public-key encryption schemes.

1.1.1 The Dawn of the Public Key Encryption Scheme

“We stand today on the brink of
a revolution in cryptography.”

1976, Diffie-Hellman.

Whitfield Diffie and Martin Hellman’s pioneering paper [94] “New Directions in Cryp-
tography”, published in 1976, demonstrated an elegant approach to construct a shared
key over an insecure channel, assuming the hardness of a mathematical problem. In
brief, suppose that in the cyclic group G with the generator g , it is easy to compute g to
power x but infeasible to compute the discrete logarithm of h (x = logg h : g x = h). Then
Alice and Bob can establish a secret value by performing steps in Figure 1.1.

This outstanding achievement paved the path for cryptographic primitives such as
Public Key Encryption Scheme, (PKE for short) and Digital Signatures Scheme. In PKE
schemes, each entity has two keys. The publicly-known key, a.k.a. the public key, en-
ables individuals to encrypt their message m under the public key. And the private key,
which allows the owner, to decrypt the ciphertext.and recover the original message. In
contrast, in the signature scheme, the owner of the secret key signs some messages, m
and later, anyone can validate the message’s using the related public key.

1.2 Towards Advanced Cryptography

Despite the wide variety of cryptographic primitives, they all have adopted a common
subtle concept; ensuring some property, either confidentiality, authenticity, or integrity
on data. Hence, in the next step, natural questions may be:

8 Chapter 1. Introduction

FIGURE 1.1: Diffie-Hellman Key Exchange Protocol

1. Alice and Bob select two random integers:

Alice : nA , Bob : nB .

2. They compute A = g nA and B = g nB , sends it the other side while keeping nA and nB

secret:

Alice
A−−−−−→

B←−−−−−
Bob

3. They raise the other party’s value to their secret number after receiving it:

Alice : K=BnA , Bob : K=AnB

4. The shared key would be identical to K =BnA =AnB = g nA ·nB , and the hardness of Diffie-
Hellman problem guarantees that the shared key is secure.

i. Is it possible to find a cryptosystem that ensures confidentiality, integrity
and authenticity of some computations?

ii. Is it possible to evaluate a function on encrypted data without compromis-
ing the plain data?

A more concrete example is an e-voting system in which voters cast an encrypted
ballot rather than a plain ballot.

i. How do we verify whether the outcome of an e-voting method is accurate,
or some malicious authority manipulates some ballots?

ii. How can we tally encrypted ballots without having to open every single one
in a verifiable way?

In their seminal paper[128] in the late 1980s Shafi Goldwasser, Silvio Macali and
Charles Rackoff positively answered the first questions by introducing one of the fas-
cinating cryptographic primitives known as Zero-Knowledge Proof Systems.

Furthermore, regarding the second question, the functional encryption scheme was
developed independently in two papers [55, 214] by Dan Boneh, Amit Sahai, Bernet Wa-
ter and Adam O’Neill. These two primitives constitute the foundation of our research
into developing a Verifiable Secure and Privacy-Preserving Computation, which is the
primary topic of this thesis.

1.2.1 Zero-Knowledge Proof Systems

Zero-knowledge proof systems, introduced in the seminal work of Goldwasser, Micali,
and Rackoff [128], are one of the fascinating and essential primitives in cryptography.
However there is a contradiction hidden within the concept of Zero-Knowledge. At the
same time, proof should be convincing; it must yield no knowledge beyond the valid-
ity of the proven statement. In other words, obtaining a zero-knowledge proof that a
statement is true is equivalent to being told by a trusted party that the statement is true.

1.2. Towards Advanced Cryptography 9

Goldreich, Micali, and Wigderson [123] state that the zero-knowledge proof is an
innovative technique to force involved parties in a protocol to adhere to it while assuring
that no secret information is leaked.

Zero-knowledge proof is most commonly used to prove NP-language membership;
Namely, the prover, with the help of some auxiliary secret input w , which is called wit-
ness, proves that some x belongs to some language L . Informally, the proof must meet
three requirements:

i. Completeness: the verifier accepts the proof if x does belong to the language L ,

ii. Soundness: no [cheating] prover can falsely convince the verifier of accepting the
proof for an invalid x. (i.e., When x does not belong to the Language L),

iii. Zero-Knowledge: the proof (including all interactions) should not reveal anything
rather than the the statement’s validity.

While formalizing the first two properties is straightforward, defining a formula that en-
capsulates the third is more challenging. Zero-Knowledge is strongly intertwined with
the simulation paradigm, a fundamental concept in cryptography that underpins a va-
riety of cryptographic security concepts, including semantic security.

Simply put, simulation is a method of creating an ideal world in which we have the
security property by definition and then comparing it to the real world in which we want
to prove the security of some primitive. For example, the concept of a zero-knowledge
property compares what an adversary who receives the proof can learn to what an ad-
versary who receives only “the statement is valid” . According to the definition, a proof

system has the zero-knowledge property if both adversaries can learn approximately
the same amount of information. This ensures a high level of security because the lat-
ter adversary learns nothing other than the statement’s validity. This implies that when
the adversary receives the proof in the real world, it learns nothing more than the state-
ment’s validity, which we must prove using the zero-knowledge proof system.

The simulator must extract the adversary’s execution inputs and then generate a
view consistent with these inputs. Furthermore, this view must be indistinguishable
from the actual view. Section 2.4.1 will discuss the simulation paradigm in modern cryp-
tography and compare it with game-based techniques.

As Zero-Knowledge Proof System is one of the essential ingredients we employ to-
wards having “Verifiable Secure and Privacy-Preserving Computation,” we gather ba-
sic terminology and background of it in a brief survey in chapter 3.

1.2.2 Fine Grained Access to Information

Subsequent breakthroughs in modern cryptography stemmed from significant ad-
vances in machine learning, cloud computing, decentralizing and outsourcing comput-
ing initiatives. The issue that the areas mentioned above have in common is:

How to find a way to use the data while preserving individual privacy?

The above question put forth the idea of “fine-grained access” to the data rather
than “all-or-nothing”. We illustrate the notion with a concrete example.
Consider a central bank that audits and ranks local banks based on transaction quan-
tity. As a result, all local banks are willing to share their financial turn-over (which is
actually confidential information on their customer transactions) with the central bank

10 Chapter 1. Introduction

to facilitate financial discoveries such as predicting the future or finding better market-
ing methods without disclosing customers’ private information due to confidentiality
concerns.

If we encrypt the data traditionally (either with a public key or symmetric key cryp-
tosystem), the central bank has access to all or none (all-or-nothing) of the data, de-
pending on having or not having the key. It is important to note that the central bank
does not require the raw data and simply needs to perform some computation on the
raw data to obtain the necessary evaluation. As a result, an alternative and ideal ap-
proach for the central bank would be to have some restricted key that allows the holder
to perform the computation through an encrypted database, learning just about the
data’s evaluation and nothing more about the raw data (fine-grained-access).

This is the concept underpinning the functional encryption scheme, the new en-
cryption paradigm first presented by Sahai and Waters [229], formalized by Boneh, Sa-
hai and Waters [55] and independently by O’Neill [214].

In a functional encryption scheme, in contrast to the public key cryptosystem, a
decryption key, so-called, token, tok f allows obtaining a function of the original mes-
sage, f (m) rather than the message itself. More specifically, in a functional encryption
scheme for functionality F : K×X →Y , defined over key space K, message space X , and
output space Y , for each key ∈K, the owner of the key can obtain F (k, x) = fk (x) from
the ciphertext of m computed under the master public key MPK, Figure 1.2.

FIGURE 1.2: Functional Encryption Scheme

• Master Public Key: MPC, • Enc(MPK,m) →CT

• Master secret key: MSK, • TokGen(MSK) → tok f

• Functionality: F : K×X 7→Y • (CT,tok f) → f (m)

1.2.3 Inner Product Encryption Scheme

Since the beginning, one of the most critical questions about functional encryption
schemes has been,

For which functionality can we design an efficient, functional encryption
system that provides a high level of security?

Researchers have attempted to expand the functionality class supported by a func-
tional encryption scheme despite some impossibility results. The path to developing a
functional encryption scheme with the functionality of all polynomial-time algorithms,
began with an identity-based encryption scheme and has a steppingstone, namely “In-
ner Product Encryption Scheme”.

Inner product encryption scheme (IPE for short) is a notable special case of func-
tional encryption schemes and have attracted wide interest from both practitioners and
researchers in the last decade, including privacy-preserving statistical analysis, where
statistical analysis itself includes sensitive information and conjunctive/disjunctive nor-
mal form formulas.

In IPE, the message is associated with a pair (m, x⃗), with m being the payload message
and x⃗ ∈ Zn

p the attribute, the token is associated with a vector v⃗ ∈ Zn
p and the function-

ality is defined as:

1.3. Verifiability in the Context of Functional Encryption 11

F (v⃗ , (m, x⃗)) = f v⃗ (⃗x,m) =
{

m if 〈⃗x, v⃗〉 = 0 mod Zp

⊥ i f 〈⃗x, v⃗〉 ̸= 0 mod Zp

In the first part of this thesis we present our efficient and perfectly correct inner product
encryption scheme whose security is based on the standard assumption.

1.3 Verifiability in the Context of Functional Encryption

In a standard functional encryption scheme, it is implicitly assumed that the encryp-
tors and the Central Authority (the owner of the master keys) that generate the tokens
are trustworthy. Indeed, in the presence of any dishonest party (either the party that
generates the token or the party that encrypts the message) the decryption outputs may
be inconsistent, and this raises severe issues in practical applications.
In the preceding example, if a local bank delivers inaccurate encrypted data or a faulty
token, resulting in incorrect evaluation. Even further, no other party will be able to iden-
tify this malicious operation due to the system’s security i.e., the inherent security will
protect the harmful party.

As a concrete example, let’s consider a case in which a local bank sends a list of en-
crypted data containing the amount of withdrawal from the bank account and deposit
to the account for each of its customers, and it is a fact that the amount of deposit is
always a greater number than the withdraw. This encrypted data is sent to two separate
head offices, which evaluate the bank balance for distinct time periods. Furthermore,
the local bank generates two tokens, tokF ,tokG , for two functions, F and G . Function
F evaluates the local bank’s balance for months 3 and 4 and function G evaluates the
balance for months 3,4 and 5.

If the local bank is not trustworthy, it can generate a faulty ciphertext or a defective
token for at least one of these two centers, resulting in:

1 2 3 4 5 6 7 8 9 10 11 12
WL: deposit for each month 56 34 91 62 10 73 55 91 102 40 78 109

DL: withdraw for each month 12 5 18 23 5 21 32 7 11 23 55 106

(MPK,W L,DL) 7→CT : (tokF ,CT) 7→ 112, (tokG ,CT) 7→ 94

As the numbers show, the two numbers are incompatible because the second num-
ber, which includes a month more, should be higher than the first. Unless these two
parties compare their results, they will be unaware of the system’s flaw.

To overcome this issue, Bardishayan [23] introduced the concept of verifiable func-
tional encryption, which captures the basic requirement of output correctness. That
is, even if the ciphertext is faulty generated (as well as the master keys and the token),
the decryptor is guaranteed a meaningful sense of accuracy. In simple terms, the prin-
ciple of verifiability in functional encryption schemes asserts that if the master public
key MPK and a ciphertext CT pass a public verification test, it indicates that there exists
some message m such that the following holds for all verified tokens (for function f):

f : (tok f ,CT) 7→ f (m).

Indeed, verifiability and security (i.e., privacy) challenge each other. And developing
a solution that satisfies both of these qualities consistently introduces the concept of
verifiable functional encryption, a fascinating challenge for cryptographers.

12 Chapter 1. Introduction

In the first part of our thesis, we develop a verifiable inner product encryption scheme,
employing our perfectly correct IPE along with a particular Zero-Knowledge proof sys-
tem.

1.4 Verifiable Secure E-Voting Protocols

E-voting systems have been used for political elections in many countries, including
Australia, Brazil, India, Estonia, and the United States. In such high-stakes elections, it
is also critical to prevent voters from being coerced to vote or not vote for a specific can-
didate, abstain from voting or sell their votes. This is also reflected in the international
standards of elections of the UN Committee on Human Rights [248] which requires that
“[any] coercion of voters should be prohibited by penal laws, and those laws should be
strictly enforced.”

It is believed that developing an electronic voting system is a challenging and com-
plicated task. Not only because of the vast and diverse aspect of an election (social as-
pect, networks, and complexity of the implementation) but also because of the mul-
tiplicity and diversity of the involved parties (a wide range from experts in computer
science and security to people with no experience or knowledge in encryption or even
computer science.)

On the one hand, a voting system must guarantee voter privacy while also protecting
them from malicious influencers who want to swing an election or intrude on the elec-
tion by coercing individuals to vote in a particular way (coercion-resistance). On the
other hand, it must safeguard voters from themselves; precisely, it should not place vot-
ers in a situation where they can prove how they voted since this would expose them
to coercion and vote-buying, “receipt-freeness”. Additionally, electronic voting must
be transparent or verifiable “E2E-Verifiability”. At the end of the election, it must be
demonstrated that all stages were followed the predetermined procedure honestly and
that the stated result is the same result acquired from the counting of valid ballots. Fur-
thermore, all of these stages must be implemented practically, efficiently, and useable
for the general public, who may not have substantial experience in computers, security,
or related areas.

There is a consensus in modern e-voting that all desired e-voting protocols must
be; usable, efficient, secure (privacy-preserving) and verifiable. The first two properties
convey the general concept:

i. Usability captures the fact that human voters must easily use the system to cast
their votes, check that their ballots were counted, and run an anti-coercion strat-
egy if necessary. Otherwise, even if the e-voting system is theoretically secure, it
will be rendered completely insecure in practice.

ii. Efficiency expresses that for real elections, an e-voting system must be practically
efficient; in particular, the voters’ ballots should be small and be generated quickly,
and it should be possible to announce the election result fast.

When it comes to verifiability and privacy in the context of e-voting protocols, each term
takes on its meaning based on distinct but intertwined core properties. For example,
privacy is defined by the following key properties: ballot secrecy, receipt freeness, and
coercion resistance, and the threefold vote-as-intended, recorded-as-cast, and tallied-as-
recorded define the concept of E2E verifiability.

1.4. Verifiable Secure E-Voting Protocols 13

1.4.1 Privacy in the context of E-Voting

Informally we can define the privacy notion in an e-voting scheme into the three key
properties [220]:

i. Ballot secrecy: The voting mechanism must be designed to not expose the voter’s
choice, up to the election result.

ii. Receipt freeness: The voting system should not prove how voters voted to a third
party.

iii. Coercion resistance: The voter should be able to vote for her preferred candidate
even if she appears to be cooperating with a coercer.

Given that the threat of punishment does not always deter individuals from engaging
in illegal activities during an election, the voting system must be designed in such a way
that it supports the fundamental privacy requirements on a technical level or at the very
least mitigates the possibility of conducting such attacks (see, e.g., [168, 80, 17, 79, 97,
232, 21, 259, 180, 154]).

For instance, we may ensure some degree of ballot privacy by utilizing a secure en-
cryption scheme. Or we can protect voters against the coercer by offering a counter-
strategy that allows voters to achieve their goal in the presence of an adversary instead
of obeying the coercer. The coerced voter can vote for her preferred candidate by run-
ning the counter-strategy. However, due to some technical mechanisms, the coercer
should not be able to distinguish whether the coerced voter followed his instructions
(e.g., voted for the coercer’s favourite candidate) or executed the counter-strategy.

The first two features, ballot secrecy and receipt freeness are comparable to the in-
person election. at the same time the coercion-resistance property in electronic remote
voting system is slightly different from the ordinary election. So, we provide an overview
of counter-strategies that support a coercion-resistance voting protocol.

From a technical perspective, several approaches in the literature implement the
concept of coercion resistance fake credentials, masking, and deniable vote updating.
The three most commonly used approaches are:

i. Fake credentials technique provides each voter with a unique and secret creden-
tial C . A voter uses C to submit her vote when she is not under coercion. Oth-
erwise, if a voter is under coercion, she can create a so-called fake credential C∗
to submit her coerced vote. Since the voter’s fake credential is invalid, the voting
authorities will secretly remove the respective vote.

ii. Masking choices provide each voter with a unique and secret mask m̂. A voter uses
m̂ to blind their actual vote v̂ when not coerced. Otherwise, if a voter is coerced to
vote for a different choice v , then it computes a false mask m such that the result-
ing blinded vote is still a vote for its real choice v̂ .

iii. Deniable vote updating scheme permits the voter to overwrite her submitted bal-
lot, which she may have cast under coercion, such that no one else, including a
possible coercer, can see whether or not the voter has subsequently updated her
vote. The voting system should not provide evidence on how a voter voted to a
third party.

14 Chapter 1. Introduction

1.4.2 Verifiability in the Context of E-Voting

According to documented cases, many e-voting systems include weaknesses that allow
for election results to be tampered with (see, e.g., [95, 244, 261, 147, 243]). To over-
come these vulnerabilities, a comprehensive investigation has been conducted into de-
veloping an electronic voting system with end-to-end verifiability security properties.
End-to-end verifiability features imply that if the election protocol passes a particular
procedure, the published election result is correct, i.e., corresponds to the votes cast by
the voters, even if voting devices and servers have programming flaws or are malicious.

It is important to note that, as with other security protocols, there is a trade-off be-
tween verifiability and privacy. However, much successful research has been conducted
on the verifiability of secure voting protocols, whether for postal or electronic elections.

As early instances of verifiable voting schemes, we can refer to Punchscan and Opti-
cal Scan [76], introduced by David Chaum which employ visual cryptography and opti-
cal scanning to enable voters to verify their votes’ accuracy and tally result.

A scratch-off surface is used in Ben Adida’s Scratch and Vote technology. Another
technique was used in the Prêt à Voter system, invented by Peter Ryan et al. [226]. In-
stead, each ballot form is a random permutation of the primary candidate list. This
permutation is encrypted to provide voter privacy, and in the tally phase, it is used to
retrieve the original permutation and also serves as the voter verification receipt. Ron
Rivest developed the ThreeBallot voting protocol to give some of the benefits of a cryp-
tographic voting system without the use of cryptography. Numerous modern verifiable
voting methods are theoretically compatible with paper-based and electronic elections.
Additional examples are available in [8, 78, 39].

Although the preceding examples demonstrate robust and reliable techniques for
ensuring verifiability, most verifiable electronic voting protocols developed in the last
few years have relied on a zero-knowledge proof systems, which is also our approach
for implementing a secure and verifiable electronic voting protocol.

1.5 Contributions and Outline of Thesis

We now describe the structure of this thesis and summarize the main contributions. The
contributions of this thesis are twofold. The first part, which mainly relies on our results
in [242], is concerned primarily with verifiability in functional encryption.

The first part of my PhD research resulted in constructing an efficient verifiable in-
ner product encryption scheme from bilinear maps. Towards this goal, we build a per-
fectly correct IPE scheme that may be of independent interest. To our knowledge, all
IPE schemes known in literature do not satisfy perfect correctness, while our perfectly
correct IPE scheme is based on standard assumptions over bilinear groups.

The second part of my PhD research is devoted to verifiable, secure voting systems.
My result contains two practical and secure electronic voting techniques that tolerate
human error while maintaining a high level of privacy and resistance to coercion.

We expand below on the three contributions developed in this thesis and outline
some of their implications. The results discussed below have been mainly taken from
papers [242, 98, 227] presented respectively at PKC-2020, E-Vote-ID-2021 and E-Vote-
ID-2021. Further our contribution in chapter 8 is under submission.

1. Najmeh Soroush, Vincenzo Iovino, Alfredo Rial, Peter B. Rønne and Peter Y. A.
Ryan. “Verifiable Inner Product Encryption Scheme” In: Public-Key Cryptography

1.5. Contributions and Outline of Thesis 15

- PKC 2020 - 23rd IACR International Conference on Practice and Theory of Public-
Key Cryptography, Edinburgh, UK, May 4-7, 2020, Proceedings, Part I. ed. by Agge-
los Kiayias et al. Vol. 12110. Lecture Notes in Computer Science. Springer, 2020,
pp. 65–94. DOI 10.1007/978-3-030-45374-9_3. URL: https://doi.org/10.
1007/978-3-030-45374-9_3

2. Ehsan Estaji, Thomas Haines, Kristian Gjøsteen, Peter B. Rønne, Peter Y. A. Ryan
and Najmeh Soroush. “Revisiting Practical and Usable Coercion-Resistant Remote
E-Voting.” In: Electronic Voting - 5th International Joint Conference, E-Vote-ID
2020, Bregenz, Austria, October 6-9, 2020, Proceedings. Ed. by Robert Krimmer,
Melanie Volkamer, Bernhard Beckert, Ralf Küsters, Oksana Kulyk, David Duenas-
Cid and Mikhel Solvak. Vol. 12455. Lecture Notes in Computer Science, Springer,
2020, pp. 50–66. DOI: 10.1007/978-3-030-60347-2_4

3. Peter Y. A. Ryan, Peter B. Roenne, Dimiter Ostrev, Najmeh Soroush, Fatima-Ezzahra
El Orche and Philip B. Stark. “Who Was that Masked Voter? The Tally Won’t Tell!”
In: Electronic Voting - 6th International Joint Conference, E-Vote-ID 2021, Virtual
Event, October 5-8, 2021, Proceedings. Ed. by Robert Krimmer, Melanie Volkamer,
David Duenas-Cid, Oksana Kulyk, Peter B. Rønne, Mihkel Solvak and Micha Ger-
mann. Vol. 12900. Lecture Notes in Computer Science. Springer, 2021, pp. 106–
123. DOI: 10.1007/978-3-030-86942-7_8. URL: https://doi.org/10.1007/
978-3-030-86942-7_8

1.5.1 Perfect Inner Product Encryption Scheme

The first part, largely based on our results in [242], primarily focuses on developing a
perfectly correct IPE scheme based on standard assumptions over bilinear groups.

We need to build an IPE scheme with perfect correctness to instantiate the verifiable
inner product encryption scheme. Our starting point to construct a perfectly correct IPE
scheme is the IPE scheme of Park [217], which only enjoys statistical correctness. The
reason for choosing this IPE is that it is conceptually simple, and its security is based on
standard assumptions over bilinear groups. However, to make Park’s scheme compat-
ible with the Badrinarayanan et al.’s transformation we need to solve several technical
challenges, in particular:

i. The master public key needs to be verifiable.

ii. The scheme has to satisfy perfect correctness.

This requires substantial modification of all main algorithms: setup, token generation,
encryption, and decryption.

1.5.1.1 Verification of Algorithm’s Outputs.

A VIPE scheme requires public verification algorithms that can verify the outputs of the
setup, encryption, and token generation algorithms, in particular check whether these
algorithms were run honestly. In more detail, if any string (master public key, cipher-
text or token) passes the corresponding verification algorithm, it means it was a proper
output of the corresponding algorithm (setup, encryption, or token generation). Each
party who runs the setup, encryption or token generation algorithm needs to provide
a proof that it executed the algorithm honestly without revealing harmful information
about the secret parameters or the randomness used in the algorithm.

10.1007/978-3-030-45374-9_3.
https://doi.org/10.1007/978-3-030-45374-9_3
https://doi.org/10.1007/978-3-030-45374-9_3
10.1007/978-3-030-60347-2_4
10.1007/978-3-030-86942-7_8
https://doi.org/10.1007/978-3-030-86942-7_8
https://doi.org/10.1007/978-3-030-86942-7_8

16 Chapter 1. Introduction

Usually, non-interactive Zero-Knowledge (NIZK) proofs are used in this context. How-
ever, unfortunately, NIZK proofs cannot be used for verifiable FE as they rely on a trusted
CRS (Common Reference String) or random oracles. So instead, we aim at perfect verifi-
ability that holds despite any collusion and computing power. The transform of Badri-
narayanan et al. cleverly solves the issue by employing non-interactive witness-indisting
uishable proof systems (NIWI for short).

Following the transform of [23], our VIPE consists of four instances of an IPE scheme.
In the VIPE’s encryption algorithm we first run the IPE’s encryption algorithm four times
to generate four ciphertexts and then we prove that all these four ciphertexts are the
encryption of the same message or that some other trapdoor predicate is satisfied (the
latter is needed for message indistinguishability and will be detailed later).

For the sake of argument, let us assume the VIPE scheme consists only of two (in-
stead of four) parallel perfectly correct IPE scheme instantiations IP and ˆIP. The master
public key of the Park’s scheme [217] contains a component Λ = e(g , g ′) in which g is
public but g ′ needs to be kept secret. An honestly computed ciphertext CT in IP in-
cludes ct1 = g−s and ct7 = Λ−s · m among its components (we here ignore the other
components). We first provide proof that CT (resp. ĈT in ˆIP) is well-formed. Then
we need to prove that the two ciphertexts are both encryptions of the same message M
(i.e., m = m̂ = M). We reduce the problem to proving that the following property holds,
(See 4.5 for more detail):

ct7

ĉt7
= e(g , g ′)−s ·m

e(ĝ , ĝ ′)−ŝ ·m̂
= e(ĉt1, ĝ ′)

e(ct1, g ′)
= e(ĝ ŝ , ĝ ′)

e(g s , g ′)

However, since g ′ and ĝ ′ are not public, the party who runs the encryption algorithm
would be unable to prove this property. We solve this issue in the following way: We add
to the master public key of IP two elements g1, g2 (and ĝ1, ĝ2 for ˆIP) satisfying

Λ= e(g , g ′) = e(g1, g2) , Λ̂= e(ĝ , ĝ ′) = e(ĝ1, ĝ2).

Then, we define the new secret variables X3 = g s
1,X̂3 = ĝ ŝ

1 and add the following
equations:

ct−1
7 · ĉt7 = e(X3, g2) ·e(X̂3, ĝ2)−1, e(g ,X3) = e(ct1, g1), e(ĝ ,X̂3) = e(ĉt1, ĝ1).

It is easy to see that these equations are satisfied if and only if m = m̂, which the
encryptor can prove. Having modified Park’s scheme, we thus have to prove that the
modified scheme is indistinguishable-secure. This is done in Section 4.7 in which we
reduce the Security of the scheme to the Decision Linear assumption.

1.5.1.2 On Perfect Correctness Property

The correctness property in IPE2 captures the fact that the decryption’s outcome is equal
to the inner product of the two vectors. In contrast, the decryption algorithm outputs
the payload message in predicate IPE schemes if only the inner product is zero. As a
result, the decryption algorithm must determine whether to output the result of the
calculation or ⊥ symbol.

In the big picture, the encryption and decryption algorithms work as follows:

Enc(MPK,−→x ,m) →CT, Dec(Tok−→v ,CT) → m∗ = m ⊙ (random)〈⃗x,v⃗〉,
2We refer to the IPE functionality of Katz, Sahai and Waters [173].

1.5. Contributions and Outline of Thesis 17

in which random is some random value from the underlying group 〈G,⊙〉 that depends
on the randomness used by the token generator and encryption algorithms. Because
in predicate-only-IP, there is no payload message m, the outcome of the decryption
algorithm would be equal to

1 = random〈⃗x,v⃗〉 = random0

if two vectors are orthogonal and would be some random number if they are not
orthogonal.

Technically, in the predicate-IPE case, the result of the computation in the decryp-
tion algorithm would be equal to the original message, m, if 〈⃗x, v⃗〉 = 0, and a random
message, m′, if it is not. However, the primary issue here is how the decryption algorithm
should decide whether to send m′ or ⊥ without knowing vectors x⃗ and v⃗ .

Several solutions to this problem are provided in the literature for resolving this is-
sue. For instance, the Bloom Filters method was used by Boneh and Water in [56]. In
this approach, rather than using the entire set M as a message space, it considers a
subset M′ with the specific structure (for example, consider a subset of M whose bi-
nary representation starts with k zeros). Then in the decryption algorithm, at the end
of the computing steps, if the result, say m∗, does not have that structure; the algorithm
outputs the error; otherwise, it outputs m∗ as the original message. However, in this
method, the probability of false-positive, that is, m∗ ̸= m, but the decryption algorithm
outputs it as the original message instead of ⊥, is always greater than zero. Moreover,
the probability of a false result depends on the size M and M′. This indicates that we
must either consider a small message space M′ or accept a high probability of error,
both of which might be unacceptable.

To our knowledge, all IPE schemes2 known in the literature have a negligible prob-
ability of error which makes cheating possible and so not directly usable to construct
verifiable functional encryption and functional commitments for the IPE functionality.

In more detail, in most pairing-based IPE schemes the encryption and decryption
algorithms work as follows:

Dec
(
Tok−→v ,CT=Enc(−→x ,m)

)−→ m∗ = m ·e(g ,h)(λ1s1+λ2s2)〈⃗x,v⃗〉

in which λ1,λ2 are random values used in the token generation algorithm and s1, s2 are
random values used in the encryption algorithm. To decide whether to accept the out-
put of the decryption or not, the naive attempt would be the following. Generate two
ciphertexts ct,ct′ with two independent random values {si }, {s′i }, decrypt both ct and ct′
to get M and m∗

2 and if m∗
1 = m∗

2 accept the result, or output ⊥ otherwise. In more detail:

m∗
1 = m ·e(h, g)(λ1s1+s2λ2)〈⃗x,v⃗〉 , m∗

2 = m ·e(h, g)(λ1s′1+s′2λ2)〈⃗x,v⃗〉

However, in case 〈⃗x, v⃗〉 ̸= 0 there is non-zero probability for which:

λ1s1 + s2λ2 =λ1s′1 +λ2s′2 ̸= 0 ⇒ m∗
1 = m∗

2 ̸= m

As shown in figure 1.3, every point on the line L : λ1x +λ2 y = d makes the equation
equal to zero, so even if we consider two ciphertexts, as long as the randomness of the
encryption algorithm is chosen independently, an error is probable. To avoid this issue,
we choose the random values so that the above equality can never occur (figure 1.3 the

18 Chapter 1. Introduction

FIGURE 1.3: The left diagram shows the points that result to incorrect output in
decryption algorithm and the right diagram shows the single point that result to

correct output in decryption algorithm

intersection of two lines). To do so, in the encryption algorithm we choose non-zero
random values s1, . . . , s2 and s′1, . . . , s′2 such that s1 ̸= s′1, and s2 = s′2. In this case, we have:

λ1s1 + s2λ2 =λ1s′1 +λ2s2

⇒λ1(s1 − s′1) = 0

⇒(λ1 = 0)∨ (s1 = s′1)

Based on the way λ1, s1, s′1 have been chosen, neither (λ1 = 0) nor (s1 = s′1) may happen,
hence the decryption algorithm outputs m if and only if 〈⃗x, v⃗〉 = 0. The resulting IPE
scheme satisfies perfect correctness as wished and we prove that it is still selectively
indistinguishability-secure under the DLin Assumption 6. When constructing a VIPE
scheme from such an IPE scheme, these additional constraints in the encryption and
token generation procedures will correspond to more constraints in the proofs of correct
encryption and token generation.

Furthermore, an additional challenge we will have to address is that some of the
proofs in the Badrinarayananet al. transform are for relations that consist of a general-
ized form of disjunction. Thus standard techniques to implement disjunctions for GS
proofs cannot be directly applied.

1.5.1.3 Motivating Applications

IPE has numerous applications, including Anonymous Identity-Based Encryption [59],
Hidden-Vector Encryption [56], and predicate encryption schemes supporting polyno-
mial evaluation [173]. As shown in [23], making FE schemes verifiable enables more
powerful applications. As an example, we can mention, VIPE can be used to construct
what we call “Polynomial Commitment Scheme“ (detailed in 5.2.1) which corresponds to
a functional commitment of Badrinarayanan et al. for the polynomial evaluation pred-
icate. The same construction can easily be adapted to construct functional commit-
ments for the predicate-IP.

1.5.2 Revisiting Practical and Usable Coercion-Resistant E-Voting

In the second part of our research, we revisit the seminal coercion-resistant e-voting
protocol by Juels, Catalano and Jakobsson (JCJ) and the attempts to make it usable and
practical. In JCJ the user needs to handle cryptographic credentials and be able to fake

1.5. Contributions and Outline of Thesis 19

these in case of coercion. In a series of three papers Neumann et al. analyzed the us-
ability of JCJ and constructed and implemented a practical credential handling system
using a smart card that unlocks the true credential via a PIN code, respectively fake the
credential via faking the PIN. Finally we present several attacks and problems with the
security of this protocol, especially an attack on coercion-resistance due to information
leakage from the removal of duplicate ballots.

Another problem, already stressed but not solved by Neumann et al. is that PIN typos
happen frequently and would invalidate the casting vote without the voter detecting
this.

We construct different protocols which repair these problems. Further, the smart
card is a trusted component that can invalidate cast votes without detection and can be
removed by a coercer to force abstention, i.e. presenting a single point of failure. Hence
we choose to make the protocols hardware-flexible i.e., also allowing the credentials
to be stored by ordinary means, but still being PIN-based and providing PIN error re-
silience. Finally, one of the protocols has a linear tally complexity to ensure an efficient
scheme also with many voters.

In more detail, we investigate a hardware-independent protocol that can be imple-
mented using a combination of a digitally stored cryptographic length key and a PIN
only known by the voter. The long credential could be stored in several places or even
hidden via steganography. At the ballot casting phase, the software will take as input
the digital key and the password to form the credential submitted with the vote. De-
pending on the level of coercion, the coerced voter can either fake the long credential
or, for stronger levels of coercion, the voter can reveal the digitally stored credential to
the coercer but fake the PIN. Due to our improved tally, the coercer will not know if he
got faked credentials or PINs. On the other hand, since the voter memorizes the PIN,
there is a high chance of users making a PIN typo error which will invalidate the vote
and remain undetected.

Note that naively giving feedback on the correctness of the PIN is not possible for
coercion-resistance as it would allow the coercer to check whether he got a fake PIN or
not. Instead, we define a set of allowed PIN errors (e.g., chosen by the election adminis-
trator). A ballot is valid if it has either a correct PIN or an allowed PIN error but invalid
for other PINs. And our approach to implementing the protocol is based on polynomial
evaluation, which allows us to determine whether or not a PIN is legitimate efficiently.
This is accomplished by generating a list

ErrorLista = {a1 = a, a2, . . . , ak }

of approved PINs based on the user’s PIN a. From this, we generate the following poly-
nomial which has all ErrorLista members as its root:

polypin(x) =
k∏

i=1
(x −ai) =

k∑
i=0

pi xi .

To check the validity of the PIN, typed by the voter, it is then sufficient to check whether
the polynomial value on this pin is equal to zero or not.

It is obvious that this polynomial must be kept secret at all times to prevent an ad-
versary from recovering the PIN by factorizing it. As a result, we must operate with
encrypted polynomials, which brings us to our next challenge: polynomial evaluation

20 Chapter 1. Introduction

under this encryption. Namely, given the polynomial encryption as its encrypted coef-
ficient,

polypin(x) =
k∑

i=0
pi xi ⇒Enc(polypin)(x) =

k∑
i=0

cpi xi ,

as well as a ciphertext CTpin = Enc(â) that is the encryption of the entered pin, we need
to compute Enc(polypin(â)).

Therefore, in the next step, we have to find a way to prove publicly that the individual
voter’s polynomial is correctly evaluated without endangering the coercion-resistance.
For example this would e.g., rule out voters evaluating the polynomials on the voter
side only. Furthermore, for the sake of the coercion-resistance property, the protocol is
constructed so that the tally phase will secretly check whether a given PIN is in the set
of allowed PINs and will remove invalid ballots.

In chapter 7, we present a full description of our protocol with three instantiations
of the protocol. We also provide a detailed security analysis of our protocol based on the
KTV computational model introduced in [182] and the bPRIV privacy notion introduced
in [46].

1.5.3 Deniable Vote Updating

A deniable vote updating scheme enables each voter to overwrite her previously sub-
mitted ballot, which she may have cast under coercion, such that no one else, including
a possible coercer, can see whether or not the voter has subsequently updated her vote.
Among others, this technique is employed in the hybrid e-voting system used for na-
tional elections in Estonia [154] and formerly in Norway . Here, voters can overwrite
electronically cast ballots by submitting a physical ballot at the polling station. There
are also solutions to deniable vote updating for completely remote e-voting systems,
most notably [180, 197, 98].

In an e-voting system with deniable vote updating, “the vote casting process is no
different from simpler voting systems that do not ensure coercion resistance” and “even
in case of coercion, the concept of voting again to overwrite the vote cast under coercion
would most probably fit into the mental models of the voters” [179].

Despite these significant advantages, existing e-voting systems with deniable vote
updating have fundamental restrictions. For example, the deniable vote updating tech-
niques proposed in [9, 196] require that the voters’ submitted ballots are secretly com-
pared pairwise3, leading to quadratic complexity in the number of voters. This property
is undesirable for elections with medium-size or larger electorates. More specifically,
as demonstrated in [197], in an election with 180,000 voters, the solution by [9] would
require more than one core year to do the comparisons.

The only scalable e-voting systems with deniable vote updating are [180, 197]. What
these techniques have in common is that several indistinguishable dummy ballots hide
the voters’ re-voting pattern. Unfortunately, although [180] follows the concept of de-
niable vote updating, the counter-strategy proposed in [180] is cumbersome for human
voters. If a voter in [180] wants to update a choice v submitted under coercion,they need
to memorize v , invert it, multiply the result with her truly favorite choice v̂ , and submit a
ballot for v−1·v̂ . The procedure becomes even more complex if the coercer asks the voter
to submit several choices, each one updating the one submitted before. It is question-
able whether human voters are actually able to execute this complex counter-strategy
and thus whether [180] provides a sufficient level of coercion-resistance in practice.

3The latter however achieves everlasting privacy

1.5. Contributions and Outline of Thesis 21

In contrast to [180], the counter-strategy voters have to run in [197] is as easy as
it could possibly be. In fact, if a voter was coerced to submit a vote for v (or even a
sequence of votes), she can simply, at any later point of the submission phase, cast a vote
for her truly favorite choice v̂ (without having to memorize any previously cast a vote).
On the downside, [146] demonstrated that [197] does not provide a reasonable level of
security because there exists a single voting authority in [197] that needs to be trusted
for all security properties, i.e., verifiability, privacy, and coercion-resistance. According
to [146], this security issue is intrinsic to the approach taken in [197], and could thus, if
possible, only be resolved by fundamental modifications.

Altogether, we can conclude that, to date, there does not exist a practically efficient e-
voting system in the literature which is provably secure and provides human voters with
a simple counter-strategy to defeat coercion. Therefore to overcome the unsatisfying
state-of-affairs described, we propose a remote e-voting system that satisfies all of the
following properties:

• Voters can deniably update their votes intuitively, resulting in some level of coercion-
resistance.

• E2E verifiability and vote privacy is provably guaranteed without any additional
trust assumptions besides the standards.

• Large-scale real-world elections can be realized efficiently.

1.5.4 Risk-Limiting Tallies

In this part of our research, we consider elections that publish anonymized voted ballots
or anonymized cast-vote records for transparency or verification purposes, investigat-
ing the privacy implications, coercion, vote selling and exploring how partially masking
the ballots can alleviate these issues.

Risk Limiting Tallies4 (RLT) [164] is a technique that reveals only a random sample
of ballots to mitigate some coercion threats while ensuring that the required confidence
level in the election result is achieved. The intuition behind the technique is simple:
Since only a random subset of ballots are revealed, the coerced voter can always claim
that they followed all of the instructions, but their vote was masked. Put simply, there is
plausible deniability.

Here we show how these ideas can be generalized and made more flexible and effec-
tive by masking at a finer level of granularity: at the level of the components of ballots.
In particular, we consider elections involving complex ballots, where RLT may be vul-
nerable to pattern-based vote-buying. We propose various measures of verifiability and
coercion-resistance and investigate how different sampling/masking strategies perform
against these measures. Finally using methods from coding theory, we analyze signature
attacks, bounding the number of voters who can be coerced.

1.5.5 Outline

The rest of this manuscript is organized as follows:

Part One: The first part of this thesis includes our research in the “Verifiable Func-
tional Encryption Scheme”.

4This method can be applied for standard elections as well as for e-voting

22 Chapter 1. Introduction

– Building Blocks; Functional Encryption Scheme: In Chapter 2, we provide the
foundation for our thesis by reviewing fundamental mathematical, algorith-
mic, and computational models and cryptographic primitives.

– A Brief Survey on Zero-Knowledge Proof Systems: Chapter 3 combines a brief
survey and a preliminary chapter for our work. Since the concept of Zero-
Knowledge proof system plays a significant role in our research, a short study
on the Zero-Knowledge proof system is presented in chapter 3 to provide
the reader with a deeper understanding of the subject. This survey includes
formal definitions of zero-knowledge proofs and some of its variants. We also
go in more detail over some of the Zero-Knowledge systems that we use the
most of our study, such as the Sigma-protocol and Groth-Sahai NIWI proof
system.

It is important to mention although the majority of chapter 3 is devoted to
results on the Zero-knowledge proof system, for the sake of clarity, we present
a part of our contribution from [242] in section 3.12, rather than following the
publication’s chronological order.

– Perfect Inner Product Encryption Schemes: In Chapter 4 we present our per-
fect Inner Encryption scheme and its security proof based on the standard
assumption.

– Verifiable IPE: In Chapter 5 which contain some part of our contribution
from [242] we present the detail of the transformation from IPE to the Veri-
fiable IPE.

Part Two: In the second part of this thesis, we present our research on secure and
“Verifiable e-Voting Protocols”.

– Building Blocks; e-Voting Protocol: In chapter 6 we gather technical prelimi-
naries related to the e-voting protocols we use in the second part of this thesis.

– Practical and Usable Coercion-Resistant Remote E-Voting: This Chapter is mostly
based on our results in, “Revisiting Practical and Usable Coercion-Resistant
Remote E-Voting” [98].

– A New Technique for Deniable Vote Updating: Chapter 8 presents our research
to develop a deniable vote updating protocol. We stress that our research
presented in this chapter is under submission.

– Risk-Limiting Tallies: This chapter discusses our contribution in Who Was
that Masked Voter? The Tally Won’t Tell! [227], we discuss certain risk-reducing
tally strategies for elections with complex ballots.

23

Part I

Verifiable Functional Encryption
Schemes

25

Chapter 2

Building Blocks; Verifiable Functional
Encryption Schemes

“When the ancients discovered
‘Phi’, they were certain they had
stumbled across God’s building
blocks for the world.”

Dan Brown

The first part of this thesis includes our results in “Verifiable Functional Encryption
Scheme”. In this section, we introduce the notations and review the fundamental con-
cepts and mathematical background that will be used throughout the first part. We also
describe and discuss cryptographic primitives and the computational assumptions that
will be used in our research.

Contents
2.1 Mathematical Notions and Notations . 26

2.2 Algorithms . 28

2.3 A Background from Complexity Theory . 29

2.3.1 P, NP and PSPACE . 29

2.3.2 Interactive Proof Systems . 31

2.4 Provable Security . 32

2.4.1 Computational Secrecy . 33

2.4.2 Simulation-Based Security . 34

2.4.3 Game-Based Security . 35

2.5 One Way Functions . 36

2.6 Computational Assumptions . 39

2.6.1 Factorization-Based Assumptions . 39

2.6.2 Discrete Logarithm-Based Assumptions . 39

2.7 Cryptographic Primitives . 41

2.7.1 Commitment Scheme . 41

2.7.2 Public Key Encryption Schemes . 43

2.7.3 Hash Functions . 50

2.7.4 Signature Schemes . 51

26 Chapter 2. Building Blocks; Verifiable Functional Encryption Schemes

2.1 Mathematical Notions and Notations

Sets and Numbers: We let Z denote the set of all integers and N all positive integers
throughout the thesis. For any integer n ∈N, we present by [n] the set {1,2, . . . ,n} and by
{0,1}n the set of all bit-strings with length n.

The set of strings with arbitrary length, including the empty string ε, is presented by
{0,1}∗ and the length of a string s ∈ {0,1}∗ is denoted by

∣∣s∣∣. We use
∣∣.∣∣ in several cases. If

x is a string,
∣∣x∣∣ shows the length of x, for a number p,

∣∣p∣∣ shows the length of its binary
representation. Moreover, in the case of a set,

∣∣A
∣∣ denotes the number of elements in

the set.
For two integers a,b ∈N, we let gcd(a,b) and lcm(a,b) denote the greatest common

divisor and the least common multiple for a and b, receptively, and we call a and b co-
prime numbers if gcd(a,b) = 1 equivalently, lcm(a,b) = a ×b.

Euler and Carmichael’s function: For positive integer n ∈ N, the Euler’s Phi function,
φ(n), is the number of co-prime integers with n:

φ(n) = ∣∣{m ∈N : gcd(n,m) = 1}
∣∣,

and Carmichael’s function, λ(n) is the smallest positive integer such that:

aλ(n) = 1 mod n.

For a specific case, n = p×q where p and q are two distinct prime numbers, we have
the following formulas:

φ(n) = (p −1) · (q −1), λ(n) = lcm(p −1, q −1).

We denote by χS the characteristic function of the set S; χS(x) = 1 if x ∈ S and χS(x) = 0
if x ∉ S.

Cyclic groups and Bilinear maps: A commutative group 〈G, ·〉 with respect to the ac-
tion “·” is a cyclic group if there exists a group member g ∈G such that

G= 〈g 〉 = {1G = g 0, g , g 2, . . . , g n}

where 1G is the neutral element of Gwith respect to the action “·”. In other words, every
element h ∈G can be represented as a power of g , namely for all h ∈G : h = g w for some
integer w . According to a well-known theorem in group theory; for any h in finite group
G of order n; hn = 1G. Throughout this thesis, we only consider the finite group; |G| = n
and we refer to G as a prime-order (composite-order) group if n is a prime (composite)
number.

Definition 1 (Bilinear map [53]). A bilinear map, e : G1 ×G2 7→GT , is defined over a pair
of groups G1,G2 into the target group GT with three properties:

i. Bilinear: For all a,b ∈Z and u ∈G1, v ∈G2, e(ua , vb) = e(u, v)ab .

ii. Non-degenerate: Consider any two generators g1 and g2 for groups G1 and G2 re-
spectively, then e(g1, g2) ̸= 1GT .

iii. Computable: There exists an efficient algorithm to compute the map.

2.1. Mathematical Notions and Notations 27

Additional Note. Cryptography relies heavily on two classes of cyclic groups: multi-
plicative subgroups of finite fields and (subgroups of) elliptic curves supplied with bi-
linear maps both in symmetric settings when G1 = G2 and asymmetric settings when
G1 ̸=G2 (See [201, 175, 174]). The use of pairing friendly elliptic curves for cryptography
has been initiated by[53, 166, 167]. We refer to [111, 27, 110, 239] for further details on
the subject.

While this work is concerned with generic bilinear maps, it is worth noting that sig-
nificant research has been conducted on efficient bilinear mappings over elliptic curves
that may be used to instantiate (efficiently) our results, such as Weil Pairing introduced
by André Weil [258], Tate pairing [107] and one of the most efficient pairings, optimal
pairing proposed by Frederik Vercauteren [251].

Modular Arithmetic: For any integer n ∈N, the set Zn = {0,1, ..n −1} with respect to ad-
dition modulo n (i.e., where a +b := [a +b mod n]) is a commutative group of order n,
〈Zn ,+n〉. Furthermore, we denote by 〈Z∗

n ,×n〉 the multiplicative group with respect to
multiplication modulo n (i.e., a ×n b := [a ×b mod n]). In fact, Z∗

n includes all integers
in Zn that are invertible modulo n. (i.e., Z∗

n = {a ∈ Zn : gcd(a,n) = 1}). We will often
abuse these notations and write Zn for 〈Zn ,+n〉, and Z∗

n for 〈Z∗
n ,×n〉.

With respect to the above notations, we remind the following theorems from Number
Theory: ∣∣Z∗

n

∣∣=φ(n),
∣∣Z∗

n2

∣∣=φ(n2) = nφ(n),

∀a ∈Z∗
n2 : aλ(n) = 1 mod n , an·λ(n) = 1 mod n2.

Legendre Symbol, Jacobi Symbol, and Quadratic Residue: For prime number p and
integer s ∈Zp , the Legendre Symbol of x modulo p is defined as follows:

(x

p

)
=


0 If x = 0,

1 if x = y2 for some y ∈Z∗
p

−1 otherwise

For positive integer n = pa1
1 . . . pak

k , where pi are distinct prime numbers and ai ∈N,
the Jacobi Symbol of x modulo n is:

(x

n

)= k∏
i=1

(
x mod pi

pi

)ai

.

We denote by Jn the subgroup of Z∗
n with Jacobi symbol 1, which has order φ(n)/

2, and it is the largest cyclic group contained in Z∗
n . Furthermore, we let QRn present

a set of quadratic residues modulo n, which include integer x such that there exist
y ∈Z∗

n : x = y2. Using Chinese Remainder Theorem (CRT), we see that if x is a quadratic
residue modulo n then

(x
n

)= 1. The converse is only true if n is a prime number. QRn is
also a cyclic subgroup of Z∗

n of order φ(n)/4.

Probability and Distributions: For an arbitrary set S , by x
$←− S we indicate that x is

chosen uniformly at random from S . We use Un as a random variable, uniformly dis-

tributed over {0,1}n . For any probability distribution D, we let x
D←−S denotes choosing

28 Chapter 2. Building Blocks; Verifiable Functional Encryption Schemes

x from S according to the probability distribution D. We often use the term random to
mean uniformly at random and sometimes, when it is clear from the context, we drop

the distribution in
D←−. We denote by Pr[X = s] the probability of a random variable X

taking value s, and Pr
x←D

[
f (s) =α]

to denote the probability that f (x) is equal toα, while

s is sampled according to the distribution D.

Definition 2 (Statistical Distance [105]). Consider two distributionsD0 andD1 over some
finite set S and two random variables X0 and X1 sampled according to D0 and D1 respec-
tively. The statistical distance between two distributions is defined as:

dstatic := 1

2

∑
s∈S

∣∣∣ Pr
x←D0

[x = s]− Pr
x←D1

[x = s]
∣∣∣

2.2 Algorithms

By algorithm, we mean a “Turing Machine Program” which is classified into two types:
deterministic and probabilistic algorithms.

The probabilistic algorithm (which we often use in this work) incorporates an addi-
tional Turing tape with random bits (a.k.a. random coins). In the probabilistic algorithm
(Turing Machines), we assume that the random tape chooses a bit-string uniformly at
random.

A different sort of randomized algorithm, the non-uniform probabilistic algorithm,
has access to an advise string. As a result, the random coin is picked according to some
distribution rather than the uniform distribution. While this makes the algorithm more
robust than the (uniform) ones, it is, in fact, unrealistic. Therefore, we consider only
algorithms of uniform complexity throughout our work, those that do not access the
advice string.

A randomized Turing Machine, A, runs in time tA(
∣∣s∣∣) if for all string s, A(s) halts

within tA(
∣∣s∣∣) steps. For example, suppose we fix the input’s length (s ∈ {0,1}n) and con-

sider its running time as a random variable (dependent on its coin tosses). In that case,
we call the algorithm expected in polynomial time if the expectation of this random
variable is polynomial in n. In contrast, if there exist some polynomial poly such that
bounds the algorithm’s running time on input s (tA(s) < poly(

∣∣s∣∣)), then we say that A
is a (strict) polynomial-time algorithm. In our research, PPT stands for a probabilis-
tic polynomial-time algorithm that implicitly considers only the uniformly randomized
ones.

Non-uniformly Polynomial-Time Algorithms are polynomial algorithms that have
access to some extra input (polynomial length string in input length) A(s) = B(s,rpoly(|s|))
which B is a PPT algorithm.

For algorithm A, we let y ← A(s) denote A’s execution on input x with fresh random
coins that outputs y as a result. Sometimes we explicitly indicate the random coin used
by the algorithm by writing y ← A(s;random); we separate the input and randomness
by “;”. We stress that the symbol “random” represents the concept of randomness in
the algorithm not an exact value. In other words, the random values in these two algo-
rithms, y1 ← A(s1;random) and y2 ← A(s2;random) are not necessarily the same value,
although we use the same notation.

2.3. A Background from Complexity Theory 29

Interactive Turing Machines: An interactive Turing Machine (ITM) is a Turing Machine
that communicates with other Turing Machines using its two additional tapes.ITM has
one communication input tape to receive messages and one output tape to send mes-
sages to other machines. We use the following notation regarding interactive algorithms:

• 〈A(x),B(y)〉(z): Two algorithms, A and B, with inputs x and y and common input
z, interacting with each other.

• z ← A(x)⇌B(y): The algorithm A takes x as input and outputs z after interacting
with algorithm B with input y . x may or may not be equal to y . If y is not equal to
x, it implicitly means that A (B) does not have knowledge about B’s (A) inputs.

•
[
A(s),B(y)

]
(z): The probability distribution of history descriptions generated by

the interaction of B with A on common input z and private inputs x and y for each
algorithm.

Definition 3 (View of an interactive protocol [250]). Consider the interactive algorithms
〈A(x),B(y)〉(z) with two parties A and B on common input z and private inputs x and y.
Then A’s view of the interaction with B, denoted by V i ew

[
A(x)⇌B(y)

]
(z), is a random

variable 〈A,B〉[x] = (m1,m2, . . . ,mt ;random) consisting of all the messages m1, . . . ,mt ex-
changed between A and B together with the sub-string of random containing all the ran-
dom bits that A has read during the interaction.

2.3 A Background from Complexity Theory

“P versus NP;
a gift to mathematics, from computer science.”

Steve Smale.

Following from the book, The Foundations of Cryptography [119], “Efficient compu-
tations correspond to computations that can be carried out by probabilistic polynomial-
time Turing machines”.

In this section we recall some definitions and concepts from the complexity theory.
We begin by introducing three well-known complexity classes, P, NP, and PSPACE, and
then inject the fourth class that has a significant impact on cryptography.

2.3.1 P, NP and PSPACE

We consider a language L as a set of bit-strings and we say a Turing Machine decide
(recognize) the language if:

i. Completeness: For every x ∈L , the machine accepts x, outputs 1.

ii. Soundness: For every string x ∉L the algorithm rejects x , outputs 0.

Moreover, we say algorithm A decide the language L with a 2-sided error if for every
statement x ∈L , the completeness and soundness properties, occur with some failure
probability.

BPP-Class includes all language that can be decided in polynomial-time with two side-
error, defined as follows:

30 Chapter 2. Building Blocks; Verifiable Functional Encryption Schemes

Definition 4 (Bounded-Probability Polynomial Time). The complexity class BPP con-
tains all language L which is recognized by a probabilistic polynomial-time Turing Ma-
chine M such that:

i. Completeness: For every x ∈ L , the machine accepts x with probability of at least
2
3 :

∀x ∈L : Pr[A(x) = 1] ≥ 2

3
.

i. Soundness: For every string x ∉L the algorithm rejects x , outputs 0 with a proba-
bility of at least 2

3 :

∀x ∉L : Pr[A(x) = 0] ≥ 2

3
.

P-Class includes all languages L that are recognized by a deterministic polynomial-
time algorithm:

P = {L : for some deterministic polynomial-time algorithm Adeterministic:
Adeterministic(x) = 1 ⇐⇒ χL (x) = 1}

NP-Class includes all languages for which there are two algorithms; a computation-
ally unbounded algorithm and a polynomial-time algorithm. The first algorithm takes
x ∈ L as input and generates w , a bit-string of size polynomial in the

∣∣x∣∣. The second
algorithm is a boolean deterministic polynomial algorithm that outputs accept (or 1)
if x belongs to the language and outputs reject (or 0) if x does not belong to the lan-
guage.Formally we have the following definition:

Definition 5 (Complexity Class NP[119]). A language L is in NP-class if there exists a
Boolean relation RL and a polynomial poly(.) such that RL can be recognized in (de-
terministic) polynomial time, and x ∈ L if and only if there exists a w such that |w | ≤
poly(|x|) and (x, w) ∈ RL . We call w a witness for the membership of the statement x in
language L .

Examples: Consider a graph G (big graph) and the following two questions:

1. Is G an Eulerian Graph? i.e., Does G have a path that visits every edge exactly once?

2. Is G a Hamiltonian graph? i.e., Does G have a path that visits every vertex exactly
once?

Based on these questions, we can define two languages, L1 and L2 :

1. L1 = {G : G is an Eulerian Graph}

2. L2 = {G : G is a Hamiltonian Graph}

The first language belongs to class P because, according to a well-known study in Graph
Theory, a connected graph has an Eulerian cycle if and only if every vertex has an even
degree. In contrast, the second language belongs to the NP-class, because there is no
known deterministic algorithm that can decide whether or not a graph is Hamiltonian.
Moreover, having a Hamiltonian cycle of graph G , one can verify the correctness of the
witness; particularly, a deterministic algorithm R(x = G , w = cycle) exists which indi-
cates the Hamiltonian problem belongs to the NP-class.

2.3. A Background from Complexity Theory 31

PSPACE-Class: The third notable category is the PSPACE-class, which includes all lan-
guages recognized by a Turing Machine in a polynomial amount of space. It should be
noted that there is no time constraint in languages in PSPACE. It is believed that NP and
P are strictly contained in PSPACE and NP respectively:

P ⊂ NP ⊂ PSPACE

2.3.2 Interactive Proof Systems

A remarkable connection between the NP and PSPACE (assuming that NP ̸= PSPACE)
derives from another complexity class, IP that incorporates some relaxations relative
to the NP-class. Tolerating a tiny amount of errors by injecting some randomness into
the algorithms and allowing algorithms to interact, namely, sending some challenging
value, and receiving the response adaptively. Formally, we define the interactive proof
as follows:

Definition 6 (Interactive Proof Systems [128, 129]). An interactive proof system for a
language L (or its corresponding relation RL) is a two-party game between the prover
and the verifier. The verifier executes a probabilistic polynomial algorithm Verify and
the prover executes a computationally unbounded strategy Prove, satisfying the following
properties:

• Efficiency: 〈Prove,Verify〉(x) is polynomially bounded.

• Completeness: For every (x, w) ∈ RL : the Verify algorithm accepts after interacting
with the prover on common input x, with probability at least 1− 1

poly(|x|) for some
polynomial poly.

• Soundness: For some polynomial poly, it holds that for every x ∉ L and every po-
tential strategy Prove∗, the verifier, rejects with a probability of at least 1

poly(|x|) .

The class of languages having interactive proof systems is denoted by IP.

In the original definition of an interactive proof system in [128] they consider an in-
teractive Turing machines; we use the definition that was introduced in [129].

Additional Note. It is clear that all languages in NP have a one-round interactive proof
system that merely involves the prover sending (x, w) to the verifier. The verifier per-
forms the polynomial-time algorithm relation and accepts or rejects the result based on
whether or not R(x, w) = 1. Therefore, it is natural to ask whether these new class, IP, is
strictly more powerful than NP in terms of recognition of additional languages.

Much research has been done addressing the first issue, and the result illustrates a
fundamental relation between NP and PSPACE. Adi Shamir in [235] by using a novel
proof technique, “arithmetization” and Goldreich in [198] using some NP-complete re-
duction (permanent of a matrix) showed that IP = PSPACE. Assuming NP is not equal
to PSPACE, this result shows that the class IP strictly includes NP.

Another relevant question is what complexity class we obtain by relaxing a single
criterion of the NP-class. In terms of error tolerance, some works do not require per-
fect completeness and allow for failures of less than 1

3 . Goldreich et al. established two
interesting theorems in [108]:

32 Chapter 2. Building Blocks; Verifiable Functional Encryption Schemes

Theorem 2.3.1. If L has an n-round interactive proof system, then L has an n+1-round
interactive proof system with perfect completeness.

Theorem 2.3.2. If L has an interactive proof with perfect soundness, then L is in an NP
language.

This result shows the necessity and sufficiency of the relaxations. Without tolerating
any soundness failure, the IP collapsed to NP, and the two-sided error version equals
the one-sided. Moreover, in terms of interaction, the non-interactive form of IP was
studied in [20] and it was proved that it contains NP, but the converse is unknown.

Additional Note. In terms of interaction, interactive proof systems come in various fla-
vors. The non-interactive form of IP was studied in [20] and proved it contains NP, but
the converse is unknown. Arthur-Merlin games, also introduced by [20], are restricted
cases in which it is required that a verifier sends only the outcome of the coin it tosses.
This type of interactive proof is known as a public coin interactive proof, as opposed
to a private coin interactive proof, in which the verifier may keep its internal state se-
cret. Interestingly it has been proved [129] that this restricted case has essentially the
same power as the general case. In other words, each interactive proof system can be
considered as a public-coin interactive proof system. 1 More precisely, Goldwasser and
Sipser [122] prove that a public-coin interactive proof system can recognize any lan-
guage with an n-round private-coin interactive proof system with n +2-rounds.

2.4 Provable Security

In their outstanding book Introduction to Modern Cryptography [172], Katz and Lin-
dell characterized modern cryptography by its threefold principles: formal definitions,
precise assumptions and proofs of security. The first step towards modern cryptography
is establishing a formal definition. This specification provides a comprehensive view of
our model and helps us answer the essential questions:

What do we wish to safeguard? Is it the key? Is it the whole message or just some par-
tial information that allows us to discover what kind of adversary we are trying to protect
from? Are we trying to safeguard our system against what kind of adversary? How power-
ful are our adversaries, and what resources does the adversary possess?

Answering these questions helps us establish the basic steps of an approach so-
called provable approach, put simply, is a security that can be proved, and it has the
following steps:

1. Define the system you wish to protect and define the security goal precisely.

2. Define your adversarial power, resources and capabilities.

3. Specify the assumption.

4. Prove that if the assumptions hold true, the adversary with the described power
cannot breach your system.

In this section, we present our definition, concept, and the security model that we
use in our research, the approach which is called Provable security.

1This is not the case in Zero-Knowledge proof systems

2.4. Provable Security 33

2.4.1 Computational Secrecy

Perfect secrecy requires that no information about an encrypted message is revealed,
even to an adversary with unlimited computational power. However, as Shannon pointed
out, the price of achieving perfect secrecy is prohibitively high in the real world. In addi-
tion, while perfect secrecy is a worthy objective, it is also unnecessarily strong. Likewise,
a cryptosystem with small information leakage to a computationally bounded adversary
is still considered secure in real-world applications. These considerations lead us to de-
fine another concept of secrecy: computational security.

There are two approaches to computational security:

i. The concrete approach to computational security estimates the maximal security
level of the system based on the adversary’s resources (e.g., time). A scheme is
(t ,b)-secure if any adversary with a time limit of at most t succeeds in violating
system security with a probability of at most b. This approach is most applicable
in practice, whereas we employ an asymptotic in the theoretical study.

ii. The asymptotic approach is rooted in complexity theory, and it equates efficiency
with a probabilistic polynomial-time algorithm and slight probability with negligi-
ble functions (Definition 7). In complexity theory, we usually measure the algorithm’s
running time based on the length of its input.

Definition 7. A function negl(.) :N 7→R is a negligible function if for any polynomial poly
there exits a number n∗ ∈N such that:

∀n > n∗ : |negl(n)| < 1

poly(n)

The dual of negligible function is an overwhelming function. We say f is overwhelm-
ing if 1− f (.) is a negligible function.

Security Parameter. Although the asymptotic approach relies on complexity, it is dan-
gerous to tie the security failure to the input length from the security point of view, as we
may need to guarantee high security even for short statements. For this purpose, we use
the concept of security parameter, a positive integer ℓ ∈N, in the asymptotic approach.
We bind all algorithms in a cryptosystem together by using the security parameter as
their common input. This allows us to investigate the system’s security comprehen-
sively. In order to respect the notion and terminology of complexity theory, we use a
unary representation of security parameters as input to the algorithms.

Therefore to put the computational secrecy in formal definition, we will have the
following:

Definition 8 (Computational Secrecy). A cryptosystem has computational secrecy if any
PPT adversary succeeds in breaking the scheme with at most negligible probability in se-
curity parameter:

Pr
[
SuccA(1ℓ)

]
< negl(ℓ)

After establishing the computational framework, proceed by defining other concepts
required for our security model.

Adversary: While we correspond an efficient method that runs in probabilistic polyno-
mial time to ensure a higher level of security, an adversary is considered a non-uniform
probabilistic algorithm. We distinguish active and passive adversaries

34 Chapter 2. Building Blocks; Verifiable Functional Encryption Schemes

• Passive adversary attempts to obtain secret information while (honestly) follow-
ing the cryptographic protocol. For example, honest voters cast their ballot on the
public bulletin board in an election. Some malicious party tries to learn some vot-
ers’ choice by observing the published information but do not intervene. However,
security against passive adversaries does not address all possible situations.

• Active adversary forces parties to run the protocol in an unexpected way. A con-
crete example of this could be a coercer in an election who forces a voter by casting
a ballot with a particular pattern. Such executions may cause additional informa-
tion leakage, making the protocol less secure. Such adversaries are referred to as
“active adversaries” since they disobey the established procedure.

Oracle Access: Sometimes, along with inputs and random coins, we provide algorithms
with access to oracles. Oracles are a type of black-box that accepts some inputs and
provides some output. They are intended to represent the possibility that an algorithm
may obtain the answers to some queries without stating how they are computed. Given
an oracle O, we use A(x)⇌O(y) to denote that the algorithm A is given oracle access to
O when it is executed on the inputs x and y .

We highly rely on the concept of indistinguishable distributions in this computa-
tional secrecy. We differentiate three types of distribution indistinguishability:

1. Perfect Indistinguishability: Two distributions, X = {Xℓ}ℓ∈N and Y = {Yℓ}ℓ∈N are
perfectly indistinguishable if from the point of view of any PPT adversary they look
identical:

AdvX ,Y
A (1ℓ) =

∣∣∣Pr
[
A(x) = 1 | x

$←−Xℓ

]
−Pr

[
A(x) = 1 | x

$←−Yℓ

]∣∣∣= 0

2. Statistically Indistinguishability: Two distributions ensemble X = {Xℓ}ℓ∈N and
Y = {Yℓ}ℓ∈N are statistically indistinguishable if their statistical distance(Definition 2)
is negligible:

dstatic(Xℓ,Yℓ) < negl(ℓ)

3. Computationally Indistinguishability: Two distributions ensemble X = {Xℓ}ℓ∈N
and Y = {Yℓ}ℓ∈N are computationally indistinguishable if the advantage of any
PPT adversary is negligible:

AdvX ,Y
A (1ℓ) =

∣∣∣Pr
[
A(x) = 1 | x

$←−Xℓ

]
−Pr

[
A(x) = 1 | x

$←−Yℓ

]∣∣∣< negl(ℓ)

We only consider computational security throughout this thesis, so we usually omit the
computational word.

There are two methods to prove the security of some primitives in the computational
model: the Simulation-Based [191] and the Game-Based [238] methods.

2.4.2 Simulation-Based Security

In a simulation-based paradigm, we prove the primitive’s security by designing a sim-
ulator with some ideal functionality. Consider a real-world electronic election system

2.4. Provable Security 35

in which we hope no malicious party may learn voter choices. Imagine an ideal model
in which a thoroughly trusted party has secure channels to all voters, receives all voters’
choice through some secure channels, and only publishes the outcome. As is obvious,
a perfect model is secure by definition. We demonstrate a simulator that provides the
same output as the adversary in the real world while interacting with the ideal “function-
ality” in the ideal world. In such a scenario, the system in the real world has the same
level of security as the scheme in the ideal world, which is secure by definition [191].

2.4.3 Game-Based Security

The game-based method is characterized by a game centered on some generic primitive
that played between two parties: the challenger C , who has access to some secret values,
and the adversary, A who only has access to some oracles plus whatever the challenger
discloses during the game. The challenger challenges the adversary with a specific goal
in mind. While interacting with the challenger, the adversary attempts to respond to
the challenge. If the adversary achieves the predetermined goal, we say he has won the
game.

For example, in an interactive game in which the challenger tosses a coin, a goal
could be that the adversary was correctly guessing the outcome of coin-tossing. Clearly,
the adversary can guess correctly in this scenario, at least with a probability of 1

2 (ran-
dom guessing). However, the interaction between the adversary and the challenger may
help the adversary win the game with advantage of more than 1

2 . This is where we es-
tablish the security level of the generic primitive. By determining how much better the
adversary performs than a trivial adversary that merely guesses the coin outcome.

More precisely, the game-based paradigm includes the following two steps:

1. Reduction Mechanism: Relates the security property of some cryptosystems to
mathematical problems. As Goldwasser and Micali laid the foundations of prov-
able security in [127], a cryptosystem or cryptographic protocol is provably secure
if an adversary who breaches the system’s security can be turned into an adversary
who breaks a challenge that is conjectured to be hard. Therefore the reduction
does not establish any level of security for the scheme on its own. However, as-
suming that no efficient algorithm can solve the underlying problem (challenge)
with a high probability, the reduction ensures that the probability of breaching the
cryptosystem is negligible.

As a result of the above explanation, the reduction mechanism may be summa-
rized in the following phases.

(a) Consider a hard problem, X , for which no efficient (PPT) algorithm is be-
lieved to exist.

(b) Assume an effective adversary A that attacks the cryptosystem C with a suc-
cess probability of s.

(c) Develop an efficient algorithm B that attempts to solve problem X by using
adversary A as a subroutine. In reality, B simulates an instance of scheme C
for A as resulting in; As far as A can tell, it appears to be engaging with C .

(d) Prove that when A succeeds in breaking the instance of C (that B is simulat-
ing), then B should be able to solve the instance x of X .

Taken together, the above suggests thatB solves X with non-negligible probability,
which contradicts our assumption that no efficient algorithm solves the problem
with non-zero probability. As a result, the scheme’s security will be proved.

36 Chapter 2. Building Blocks; Verifiable Functional Encryption Schemes

Additional Note. We benefit from this approach in two ways. Firstly, it eliminates
many insecure protocols. Additionally, it allows cryptanalysis to concentrate on
investigating a limited number of specific, well-defined problems. As examples
of the problems considered hard problems, we can name factorization and dis-
crete logarithm, the inverse of exponentiation in some specific cyclic groups or
the shortest vector in a lattice.

2. Game Hopping Mechanism: After associating our primitive security property with
a hard problem, we design a sequence of slightly different games, each computa-
tionally close to the previous one. Specifically, the adversary cannot distinguish
between the two unless it solves the difficult problem that we assumed no effi-
cient adversary could solve. This contradiction implies that the adversary could
not distinguish between two consecutive games. Further, the game should be con-
structed to capture the desired security property for the primitive that we wish to
establish.

Experiments and Games. Consider an experiment (game) as an interactive game be-
tween a challenger and an adversary (or a distinguisher) in which after some rounds of
interactions between A and C , the challenger selects bit β. The adversary must output
bit β′ (in fact, guess the bit β) based on all information he gets during the execution.
The adversary would win the game if β=β′.

SuccExpA (1ℓ) = |Pr
[
β=β′]

Advantage. We define A’s advantage as the ability of the adversary to guess the bit cor-
rectly or win the game better than random guesses, 1

2 .

AdvGame
A (1ℓ) = |Pr

[
A 7→ 1 | CGame 7→ 1

]
−Pr

[
A 7→ 1 | CGame 7→ 0

]
Additional Note. In some certain experiments, the adversary is required to output some
information, not a single bit. These games are mostly used in computational problems
such as factorization problems. (See 2). In contrast the above experiments, which are
related to a challenging bit, are mostly used in the decisional problem (See 7).

2.5 One Way Functions

Considering the basic concepts of computational complexity theory, now is the time to
define one of the most important cryptographic concepts. Therefore we introduce one
of the essential concepts in modern cryptography theory, the One-Way Function.

Definition 9. [(Strongly) One-Way function:] Function f : {0,1}∗ 7→ {0,1}∗ is a (Strongly)
one-way if it is efficiently computable and hard to invert:

• Efficiently computable: There exists a deterministic polynomial-time algorithm
that for any x ∈ {0,1}∗ compute f (x).

• Hard to invert: For any PPT algorithm A, the following probability is negligible;

Pr
x←Un ,random

[
y ←A(f (x),1ℓ;random) | f (x) = y

]
< negl(ℓ)

2.5. One Way Functions 37

Suppose we replace the PPT property of algorithm A with a non-uniformly proba-
bilistic algorithm (a family of polynomial circuits). In that case, we get a more powerful
concept known as a Non-Uniformly Strong One-Way Function. Obviously if f is one-
way in a non-uniform way, then it is also one-way. The converse is not necessarily true,
although it is widely believed that non-uniformly one-way exists, and all examples in
the preceding subsections are believed to be non-uniformly one-way functions [119]. A
weaker notion of one-way function results from using the following formula in defini-
tion9:

Pr
x←Un ,random

[
y ← B(f (x),1ℓ;random) | f (x) ̸= y

]
= 1−negl(ℓ)

Not every weak One −W ay is a strong One-Way function, but interestingly, it is
proved that if there exists a weak One-Way then there exists a strong One-Way function.

Theorem 2.5.1. Weak one-way functions exist if and only if strong one-way functions
exist. [119]

Formulating one-way functions as in Definition 9 is appropriate for abstract discus-
sion. However, to conduct more robust research, we require some modifications:

• Rather than considering one-way functions acting on an infinite domain (i.e., {0,1}∗),
we consider infinite sets of functions; each is operating on a finite domain.

• In many cryptosystems, we must have a unique preimage. Hence we prefer only to
consider one-way permutation rather than one-way function.

• Also, to retrieve the encrypted message from the ciphertext, we need to be able to
efficiently invert y and find x : f (x) = y with the help of some additional input,
called trapdoor.

The above requirements bring us to the definition of Trapdoor Permutation Collection:

Definition 10. Collection of Trapdoor Permutations One-Way Function [119]: Let Ī be
a set of bit-string, Ī ⊂ {0,1}∗ and Īn = Ī ∩ {0,1}∗. A collection of permutations with indices
in Ī is a set { fi : Di 7→ Di } such that each fi is one-to-one on the corresponding domain
Di . Such a collection is called a trapdoor permutation if there exist four probabilistic
polynomial-time algorithms I , D, F and F−1 such that the following five conditions hold:

• Index and trapdoor selection: For every n;

Pr
[

I (1n) ∈ Īn × {0,1}∗
]> 1−2−n

• Selection in the domain: For any n ∈N and i ∈ Īn :

1. Pr[D(i) ∈ Di] > 1−2n .

2. Conditioned on D(i) ∈ Di , the output is uniformly distributed in Di . That is
for every x ∈ Di : Pr[D(i) = x | D(i) ∈ Di] = 1

|Di | . without loss of generality Di ⊂
{0,1}poly(|i |).

• Efficient evaluation: For every n

Pr
[

F (i , x) = fi (x)
]> 1−2−n .

38 Chapter 2. Building Blocks; Verifiable Functional Encryption Schemes

• Hard to invert: Let In be a random variable describing the distribution of the first el-
ement in the output of I (1n), and Xn := D(In). Then for every probabilistic polynomial-
time algorithm A, every positive polynomial poly(.) and all sufficiently large n:

Pr
[
A(In , f In (Xn)) = Xn

]< 1

poly(n)
.

• Inverting with trapdoor: For every n ∈N, any pair (i , t) in the range of I (1n) such
that i ∈ Īn and every x ∈ Di :

Pr
[

F−1(t , fi (x))
]> 1−2−n .

2.5.0.1 The RSA Collection as a One-Way Permutation:

One of the most well-known collections of one-way trapdoor permutations, is the RSA
family, proposed in [222].Following definition 10, we describe the RSA collection as fol-
lows:

Definition 11. The RSA trapdoor one-way collection, RS A = {RS AN ,e }ℓ is collection of
one-way trapdoor permutation for index set, I = (N ,e), function RS A(N ,e, x) = xe mod n
and domain D(N ,e) where N = p ·q for two prime numbers p and q with length 1

2 · log2 N
and gcd(e,φ(N)) = 1. The function of index n = (N ,e) has domain Dℓ = {1, . . . , N } and
maps x 7→ xe mod N . Using the fact that e is relatively prime to φ(N) = (p −1) · (q −1), it
can be shown that the function is in fact a permutation over its domain. Hence, the RSA
collection is a collection of permutations. RS A.I ,RS A.D ,RS A.F :

• Index and trapdoor selection: The index set is I = (N ,e) where N = pq for two
(large) prime numbers p and q, 2ℓ−1 ≤ p < q < 2ℓ. The number e is a co-prime with
φ(N); gcd(e,φ(N)) = 1 which is uniformly selected among the admissible possibili-
ties.

• Selection in domain: We set D(N ,e) = {1,2, . . . , N } and algorithm DRS A selects (al-
most) uniformly an element in the set D(N ,e).

• Efficient evaluation: RS A(N ,e, x) = xe mod n,

• Hard to invert: It is proved that the RSA function is hard to invert without the trap-
door (See 1).

• Inverting with trapdoor: The corresponding trapdoor would be d such that e ·d = 1
mod φ(n). With the help of number theory, we know that

RS A.F(N ,e)(x) = xe = y =⇒ yd = xe·d=1[mod φ(N)] = x[mod N]

In order to avoid heavy notation, instead of the above description, we denote by
GRSA(1ℓ) the PPT algorithm which generates the RSA tuple (p, q , N ,e,d) such that p
and q are two strong prime numbers and

2ℓ−1 ≤ q < 2ℓ, N = p ×q , e ∈Zn ,gcd(e,φ(n)) = 1, e ·d = 1 mod φ(N).

Assumption 1. It is believed that, for any PPT algorithm A the success probability in
Figure 2.1 is negligible in ℓ.

2.6. Computational Assumptions 39

FIGURE 2.1: ExprsaA (1ℓ), RSA Experiment

Challenger steps: Adversary steps: Success probability:

1.(e, p, q) ← IRS A(1ℓ)

2.(x) ← D(N ,e) 4.x ′ ← A(1ℓ, (N ,e), y) SuccrsaA (1ℓ) = Pr
[

x ′e = y
]

3.RS A.F(N ,e)(x) = y

2.6 Computational Assumptions

This section reviews the classical computational assumptions that will underpin the re-
mainder of this thesis, which we divide into two broad categories: discrete-logarithm-
based assumptions and factorisation-based assumptions.

2.6.1 Factorization-Based Assumptions

Factorization Problem: The hardness of factorization, intuitively, states the following,
for any PPT adversary A who is given the number n = pq , the product of two random
primes p and q , the probability of generating two number p ′ and q ′ such that n = p ′×q ′
is negligible in terms of ℓ= ∣∣p∣∣.

It is easy to see that the probability would not be negligible if either p or q is a small
prime number. Hence we need to define a precise setting for factorization assumption.
One of the standard settings is the one where it is assumed that p and q are strong prime
numbers (Blum primes), namely, p ′ = p−1

2 and q ′ = (q−1)
2 are also prime numbers. Here

we consider the general setting.

Assumption 2. Factorization assumption holds true if the following probability (success
probability) for any PPT adversary A is negligible.

SuccfactorizationA (ℓ) =Pr
[
A(n) 7→ (p ′, q ′) | n ←GRSA(1ℓ),n = p ′×q ′

]
<negl(ℓ)

(2.1)

Decisional Composite Residuosity Problem; (DCR) states that that given the RSA num-
ber n and a random integer x, it is hard to decide whether x is an n-residue modulo n2.

Assumption 3. DCR assumption holds true if the following probability (success proba-
bility) for any PPT adversary A is negligible.

AdvDCRA (ℓ) =∣∣Pr [A(n, x) = 1 | n ←GRSA(ℓ), z ←Zn , x = zn]

− Pr [A(n, x) = 1 | n ←GRSA(ℓ), x ←Zn]
∣∣< negl(ℓ)

2.6.2 Discrete Logarithm-Based Assumptions

Discrete Logarithm Problem; (DL). Let GDL(1ℓ) be a PPT algorithm that generates a
group G = 〈g 〉 with some random generator g . Discrete Logarithm problem states that
given (G, g ,h ∈G) it is hard to compute α such that h = gα. Formally:

40 Chapter 2. Building Blocks; Verifiable Functional Encryption Schemes

Assumption 4. The discrete logarithm assumption holds for (G, g) ← GDL if for all non-
uniform polynomial-time adversary A, we have:∣∣Pr [A(G, (g ,h)) =α′|(G, g) ←GDL(1ℓ),r

$←−Z,h = g r]
∣∣< negl(ℓ)

Decisional Diffie-Hellman Problem; (DDH). Let (G, g , p) ←GDDH(1ℓ) be a PPT algorithm
that generates a group setting. The decisional Diffie-Hellman problem (DDH) states
that given (g , gα, gβ, Z) ∈ G4 for random integers α,β it is hard to tell whether Z = gαβ

or a random element in G.

Assumption 5. The decisional Diffie-Hellman assumption holds for GDDH if for all non-
uniform polynomial-time adversary A we have:∣∣Pr [A(G, (g , gα, gβ, Z)) = 1 | (p,G, , g) ←GDDH(1ℓ);

Z = gαβ, g
$←−G, (α,β) ←Zp]−

Pr [A(G, (g , gα, gβ, Z)) = 1 | (p,G, , g) ←GDDH(1ℓ);

g
$←−G, (α,β,r) ←Zp , (Z = g r)]

∣∣< negl(ℓ)

Decisional Linear Problem; (DLin). Let GDLin(1ℓ) be a PPT algorithm generates a bilin-
ear group setting, that takes security parameter ℓ as input and outputs ℓ-bit prime p,
the descriptions of two groups G and GT of order p and a bilinear map e : G×G→ GT .
The decisional linear problem (DLin) introduced by Boneh, Boyen and Shacham [51]
states that given (g , gα, gβ, g rα, g sβ, Z) ∈G6 for random integers α,β,r ,r it is hard to tell
whether Z = g r+s or a random element in G.

Assumption 6. The decisional linear assumption holds for GDLin if for all non-uniform
polynomial-time adversary A we have:∣∣Pr [A(G, (g , gα, gβ, g rα, g sβ, Z)) = 1 | (p,G,GT ,e, g) ←GDLin(1ℓ);

Z = g r+s ; (α,β,r , s) ←Zp]−
Pr [A(G, (g , gα, gβ, g rα, g sβ, Z)) = 1 | (p,G,GT ,e, g) ←GDLin(1ℓ)

Z = g r; (α,β,r , s,r) ←Zp]
∣∣< negl(ℓ)

The Decisional Bilinear Diffie-Hellman Problem; (DBDH). For a bilinear group seeting
(G,GT , g ,e), DBDH assumption states the hardness for PPT adversaries of solving the
following problem. On input (g , gα, gβ, gγ, Z) ∈ G4 ×GT , decide whether Z = e(g , gαβγ)
or Z is a random element in GT .

Assumption 7. The decisional linear assumption holds for GDBDH if, for all non-uniform
polynomial-time adversary A, we have:∣∣Pr [A(g , gα, gβ, gγ, Z) = 1 | (G,GT , g ,e) ←GDBDH(1ℓ);

Z = e(g , gαβγ); (α,β,γ) ←Z]−
Pr [A(g , gα, gβ, gγ, Z) = 1 | (G,GT , g ,e) ←GDBDH(1ℓ)

Z = e(g , g)r; (α,β,γ,r) ←Z]
∣∣< negl(ℓ)

2.7. Cryptographic Primitives 41

Symmetric External Diffie-Hellman Problem; (SXDH). The setup algorithm GSXDH(1ℓ)
generate a prime order bilinear map, (p,G1,G2,GT ,e, g1, g2). In addition, SXDH assump-
tion states the hardness for PPT adversaries of solving the following problem.

On input (gb , gαb , gβb , Z) ∈ G4
b , decide whether Z = e(gb , gαβb) or Z is a random ele-

ment in GT for b ∈ 1,2. Formally:

Assumption 8. We say the SXDH [204] assumption holds for group generator GSXDH if
for all non-uniform polynomial-time adversary A and b ∈ {1,2}. The following two dis-
tribution are computationally indistinguishable:∣∣Pr [A((gb , gαb , gβb , Z)) = 1 | (p,G1,G2,GT ,e, g1, g2) ←GSXDH(1ℓ);

Z = e(g1, gαβ2); (α,β) ←Z]−
Pr [A(gb , gαb , gβb , Z) = 1 | (G,GT , g ,e) ←GSXDH(1ℓ)

(Z = e(g1, g2)r); (α,β,r) ←Z]
∣∣< negl(ℓ)

Decisional Subgroup Problem; (DSub). Let GDSub(1ℓ) be a PPT algorithm that gener-
ates a bilinear group setting, that takes security parameter ℓ as input and outputs two
distinct ℓ-bit prime numbers p and q the descriptions of two groups G and GT of order
n = p ×q and a bilinear map e :G×G→GT :

ppDSub = (n,G,GT ,e, g) ←GDSub(1ℓ).

The decisional subgroup problem (DSub) introduced by Boneh, Goh and Nissim [51]
states that, without knowing the factorization of the group order n, deciding if an ele-
ment h is in a subgroup of G or not is hard, namely given (ppDSub,h = gα) for random
integer α it is hard to tell whether hq = 1 or not.

Assumption 9. The decisional subgroup assumption holds forGDSub if for all non-uniform
polynomial-time adversary A we have:∣∣Pr [A(ppDSub, Z = g pα) = 1 | pp←GDSub(1ℓ),α

$←−Z]

−Pr [A(ppDSub, Z = gα) = 1 | pp←GDSub(1ℓ),α
$←−Z]

∣∣< negl(ℓ)

2.7 Cryptographic Primitives

This section recalls some cryptographic primitives that we will use later.

2.7.1 Commitment Scheme

Commitment schemes are one of the essential components in many cryptographic pro-
tocols. Informally, the commitment scheme is a two-party two-phase protocol between
a sender and the receiver. The first phase is known as the commit phase, and the second
phase is the opening phase. It is required that the receiver does not gain any knowl-
edge (at least no knowledge of the sender’s value) in the commitment phase, even if
the receiver tries to cheat. Additionally, the commit phase should “bind” the sender to
a unique value which means that in the opening phase, the receiver accept only this
value.

42 Chapter 2. Building Blocks; Verifiable Functional Encryption Schemes

Definition 12. Commitment Scheme is a tuple of PPT algorithms, 〈SetUp,Commit,Verify〉
including the following steps:

• Set up algorithm, SetUp(1ℓ) takes as input the security parameter and generates
some public parameters pp that includes the message space M, the commitment
space C, the opening space O and the random space R.

• In the commitment phase, the sender runs the commitment algorithm on inputs,
public parameter, m ∈ M and random ∈ R to generate the commitment-opening
pair, (com,d) ∈ C×O.

• In the opening phase, the deterministic algorithm Verify(pp,com,d,m) outputs a
bit. It outputs b = 1 if d is indeed an opening for com respect to the message m.
Otherwise it reject and outputs 0.

Security Requirements. A commitment scheme requires three security properties: Cor-
rectness, hiding and binding properties defined as follows:

• Correctness: A commitment scheme is correct if for all (com,d) ←Commit(pp,m;random)
in which pp← SetUp(1ℓ), m ∈M and random ∈R, then verify algorithm outputs
1, namely Verify(pp,com,d,m) = 1

• Hiding: A commitment scheme has a hiding property if the advantage in exper-
iment 2.2 for any PPT adversary A would be negligible in terms of the security
parameter.

• Binding: A commitment scheme is binding if SuccA(1ℓ) = negl(ℓ), for any PPT
adversary A.

Additional Note. It is worth mentioning that both properties can be characterized as
perfect, statistical, or computational properties that define different flavours for com-
mitment schemes; Perfect, statistical and computational [218].

• Perfectly hiding means that commitments to any two different messages m0 and
m1 are identical. In contrast, computationally (statistically) hiding means that
commitments of any two distinct messages are computationally (statistically) in-
distinguishable.

• Perfectly binding means no unbounded adversary can open a given commitment
in two different ways, while computationally binding guarantees that no polynomial-
time adversary can open a commitment in two different ways.

It is worth noticing that a commitment scheme can have perfect hiding and compu-
tational binding or the opposite. It is, however, impossible to have perfect hiding and
perfect binding at the same time.

It is proved that a (computationally hiding, statistically binding and via versa) com-
mitment scheme does exist if One-Way function [151, 203, 209, 148, 49]. A weaker
construction comes from pseudorandom permutation [203, 63, 86, 88]. A stronger re-
sult shows that “If there exist non-uniformly One-Way functions, then there exists a bit-
commitment scheme for which the secrecy condition also holds with respect to polynomial-
size circuits [119].”

Variants. There are some types of commitment schemes used widely in practice:

2.7. Cryptographic Primitives 43

• Equivocating Commitment Scheme, which allows for a trapdoor that enables the
opening of commitments to arbitrary messages [30].

• Homomorphic Commitment Scheme, which takes the groups (M,+), (C,⊕) as the
message space and commitment space and has an extra PPT algorithm Evaluation
with the following property [140]:

For β= 0,1;m0,m1 ∈M; (cβ,dβ) ←Comm(mβ;randomβ),

c∗ ←Evaluation(pp,c0,c1) :
Verify(pp,c∗,m0 +m1) = 1

This is widely used in SAT problem.

• Polynomial Commitment: Using a polynomial commitment scheme (see also [170]),
Alice may publish a commitment to a polynomial poly(x) with coefficients in Zp .
If later Bob wants to know poly(m) for some value m, that is the evaluation of the
polynomial at some point; he sends m to Alice, who replies with the claimed eval-
uation y and a proof that y = poly(m). The proof guarantees that the claimed eval-
uation is consistent with the committed polynomial. We require the scheme to be
perfectly binding.

• Concurrent non-Malleable Commitment: This is a scheme with the non-malleable
property. Namely any PPT adversary A who has received some commitments,
com1 =Commit(m1), . . . ,comn =Commit(mn), still is unable to generate a new valid
commitment c∗ for some message m′ related to the m1, . . .mn without knowing
mi [218].

Pedersen Commitment Scheme. Our research uses, one of the most well-known com-
mitment schemes, the Pedersen commitment scheme [219], with perfectly hiding and
computationally binding property and additively homomorphic. In the Pedersen Scheme,
the message space is a cyclic group G of a prime order p and with two generators (g ,h).

Considering a cyclic group (G, .) of prime order p and two generators (g ,h), the Ped-
ersen scheme associates the message space, random space, and commitment space
with G , Zp and Zp , respectively.

• Setup(1ℓ) generates the public parameters; pp= (p,G, (g ,h)) such that |p| = ℓ.

• (c,d) ←Comm(pp,m;random) such that c= g m ·hrandom and d= random

• Verify(pp,c,d,m) accepts the opening if and only if (g m ·hd = c)

2.7.2 Public Key Encryption Schemes

In the conventional method of secure communication, also known as a symmetric key
encryption scheme, Alice and Bob use the same secret key for both encryption and de-
cryption algorithms. As a result, they need to share this secret key in advance and keep
it secret for as long as they wish to communicate secretly. Diffie and Hellman, in their
seminal paper [94], introduced the notion of a public-key encryption scheme, in which,
in contrast to symmetric encryption schemes, two distinct keys are used for encryption
and the decryption algorithm.

44 Chapter 2. Building Blocks; Verifiable Functional Encryption Schemes

FIGURE 2.2: ExphidingA (1ℓ): Commitment Experiment

Challenger steps: Adversary steps

pp← SetUp(1ℓ)
(pp)−−−−−−−−−−→

(m0,m1) ←A(1ℓ,pp)
(m0,m1)←−−−−−−−−−−−−−

β
$←− {0,1}

(c,d) ←Commit(pp,mβ)
(c)−−−−−−−−−→
(β∗)←−−−−−−−−−−

SucchidingA (1ℓ) = Pr
[
β=β∗]

,AdvA(1ℓ) = |SuccA(1ℓ)− 1

2
|

In a public-key encryption scheme, the public key operates as an encryption key;
anyone who knows that public key can encrypt a message. The private key operates as
a decryption key; only the owner of the private key can recover the original message.
Surprisingly, the encryption key (public key) is useless to an adversary attempting to
decipher ciphertexts encrypted with that key. As a result, anyone can publish or broad-
cast the public key without fear of an eavesdropper for secure communication, which
implies that a public-key encryption system allows for private communication without
a private channel for key distribution [172].

Definition 13. A public-key encryption scheme (PKE for short) is a tuple of three proba-
bilistic polynomial-time algorithmsΠpke(Kgen,Enc,Dec) applied to three sets, the keyspace
K, the message space M, and the ciphertext space C, such that:

• Kgen(1ℓ) → (PK,SK): The key generation algorithm takes the security parameter, ℓ,
as an input and returns a pair of keys (PK,SK) from the keyspace K. We refer to
the first component, PK, as a public key, which defines a message space, M, and
the second SK as private (or secret key). It requires that both keys have a length
polynomial in terms of the security parameter.

• Enc(PK,m) → ct : The encryption algorithm, is a probabilistic polynomial-time
algorithm that takes as input a message m ∈ M and the public key and returns
a ciphertext ct ∈ C.

• Dec(SK,ct) →M∪{⊥} : The decryption algorithm is a deterministic algorithm that
takes the ciphertext ct and the secret key SK as inputs and returns the message m′
from the message space or ⊥ as denoting failure.

Security Requirements. A public-key encryption scheme requires to have the following
properties:

• Correctness: The output of the decryption algorithm is the original message except
with negligible probability over the randomness of key-generation and encryption
algorithms:

2.7. Cryptographic Primitives 45

• Security: When it comes to security in the context of a public-key encryption
scheme, we need to discuss the “security guarantee” and “the adversarial model,”
namely, the adversary’s power. Then we can have a precise definition for differ-
ent flavour of the security notions such as adaptive versus non-adaptive, chosen-
plaintext vs chosen-ciphertext attacks.

The basic notion of security for a PKE is semantic security which says, no PPT adver-
sary, given two messages m0 and m1, and a ciphertext ct, can guess ct is encryption of
m0 or m1 better than a random guess.

Semantic security is the most basic security concept in a public-key system, which
states that an adversary who chooses messages m0 and m1, and receives the ciphertext
ct cannot distinguish whether ct is the encryption of m0 or m1. Therefore, considering
the adversarial power, we have the following security notions [31]:

• IND-CPA Security against an adaptive adversary: Adaptive adversary chooses
messages m0 and m1 after receiving the public-key of the scheme. A public-key
encryption scheme is indistinguishable against chosen plaintext attacks (IND-CPA

for short) if the advantage of any PPT adversary inExpcpa−AA (1ℓ) in Figure 2.3 would
be negligible in terms of the security parameter.

• IND-CPA Security against a non-adaptive adversary guarantees a weaker notion
of security since a non-adaptive adversary should choose messages m0 and m1

before receiving the public-key of the scheme. A public-key encryption scheme is
indistinguishable against chosen plaintext attacks (IND-CPA for short) if the ad-

vantage of any PPT adversary in Expcpa−nAA (1ℓ) would be negligible in terms of the
security parameter, Figure 2.3.

Note that the only difference between Expcpa−AA (1ℓ) and Expcpa−nAA (1ℓ) is the se-
quence in which steps 1 and 2 are carried out.

• IND-CCA Security against an adaptive adversary ensures a high level of security
in which the adversary has access to a decryption oracle. It means that the adver-
sary can query some string ct to the decryption oracle and receive some message
m such that Dec(ct) = m or ⊥. An adaptive adversary can query after determining
the message m0 and m1, whereas non-adaptive adversaries can only access to the
decryption oracle before selecting the messages. A public-key encryption scheme
is indistinguishable against chosen plaintext attacks (IND-CPA for short) if the ad-
vantage of any PPT adversary in an experiment in Figure 2.4 would be negligible
in terms of the security parameter.

• IND-CCA Security against a non-adaptive adversary. A public-key encryption
scheme is indistinguishable against chosen plaintext attacks (IND-CPA for short) if
the advantage of any PPT adversary in Expcca−nAA (1ℓ) would be negligible in terms
of the security parameter, Figure 2.4.

• Non-Malleable Encryption Scheme. A public-key encryption scheme is non-malleable
if the advantage of any PPT adversary inExpnm−cpa

A (1ℓ) would be negligible in terms

46 Chapter 2. Building Blocks; Verifiable Functional Encryption Schemes

IND-CPA-Adaptive adversary

Challenger Adversary

(pk,sk) ←Kgen(1ℓ)
pk−−−−−→

(m0,m1) ←A(1ℓ,pk)
(m0,m1)←−−−−−−−−−

β
$←− {0,1}

ct←Enc(pk,mβ)
ct−−−−−→

β∗
←−−−−−−−−−

IND-CPA-non Adaptive adversary

Challenger Adversary

(m0,m1) ←A(1ℓ,pk)
(m0,m1)←−−−−−−−−−

(pk,sk) ←Kgen(1ℓ)
pk−−−−−→

β
$←− {0,1}

ct←Enc(pk,mb)
ct−−−−−→

β∗
←−−−−−−−−−

FIGURE 2.3: Experiments for CPA security

IND-CCA-Adaptive adversary

Challenger Adversary

(pk,sk) ←Kgen(1ℓ)
pk−−−−−→

A(ct)⇌Dec(.)

(m0,m1) ←A(1ℓ,pk)
(m0,m1)←−−−−−−−−−

β
$←− {0,1}

ct←Enc(pk,mβ)
ct−−−−−→

A(ct)⇌Dec(.)

β∗
←−−−−−−−−−

IND-CCA-non Adaptive adversary

Challenger Adversary

(pk,sk) ←Kgen(1ℓ)
pk−−−−−→

A(ct)⇌Dec(.)

(m0,m1) ←A(1ℓ,pk)
(m0,m1)←−−−−−−−−−

β
$←− {0,1}

ct←Enc(pk,mβ)
ct−−−−−→

β∗
←−−−−−−−−−

FIGURE 2.4: Experiments for CCA security

of the security parameter, Figure 2.5.

Advnm−cpa
A (ℓ) = ∣∣ Pr

A
(
(Enc(m0),πenc)

) 7→ 0 |
(pk,sk) ←Kgen(1ℓ)

(m0,m1) ←A(1ℓ,pk)
A(pk)⇌Dec(.)


− Pr

A
(
(Enc(m1),πenc)

) 7→ 0 |
(pk,sk) ←Kgen(1ℓ)

(m0,m1) ←A(1ℓ,pk)
A(pk)⇌Dec(.)

∣∣
< negl(ℓ)

(2.2)

2.7. Cryptographic Primitives 47

NM-CPA Indistinguishability

Challenger Adversary

(pk,sk) ←Kgen(1ℓ)
pk−−−−−→

(m0,m1) ←A(1ℓ,pk)
(m0,m1)←−−−−−−−−−

β
$←− {0,1}

ct←Enc(pk,mβ)
ct−−−−−→

A(ct1, . . . ,ctt)⇌Dec(.)

cti ̸= ct
β∗

←−−−−−−−−−

FIGURE 2.5: Experiments for Non-Malleable CPA security

Through our research we use some public-key encryption schemes. Here we recall
these schemes and their security properties.

2.7.2.1 ElGamal Encryption Scheme

In 1985, ElGamal [112] introduced a practical and powerful (partially) homomorphic
encryption scheme which has a IND-CPA security based on the hardness of decisional
Diffie-Hellman assumption 5. The original version of ElGamal is defined on the multi-
plicative group Z∗

p for some prime number p. Still, other variants of the scheme have
been proposed, instantiated on different groups in which the discrete logarithm as-
sumption holds, such as ElGamal in elliptic curve group [174] and CRT-ElGamal in a
subgroup of Z∗

n where n is an RSA-number [156], ElGamal adaptations in Class Groups
[67, 66, 64]. ElGamal in a hashed version [65]. We refer to [72] for more information
about the ElGamal Encryption scheme. Here we recall the original version of the ElGa-
mal encryption scheme [112].

ElGamal encryption scheme. Consider the group generator algorithm that on input the
security parameter, output a tuple G of a prime number p with

∣∣p∣∣= ℓ, a cyclic group G
with generator g :

G = (p,G, g) ←GroupGen(1ℓ).

Then the ElGamal PKE scheme is composed of the following algorithms for the message
space M=G:

• Key Generation:

1. Run GroupGen(1ℓ) to generate G = (p,G, g).

2. Select a random integer x from Z∗
p .

3. Set h = g x .

4. Set pkEG = (G, p, g ,h) and skEG = x.

5. Return KeyEG = (pkEG,skEG).

• Encryption: For message m ∈G:

48 Chapter 2. Building Blocks; Verifiable Functional Encryption Schemes

1. Select a random number random ∈Z∗
p .

2. Set the ciphertext ct= (g random,hrandom ·m).

3. Return ct.

• Decryption: For ciphertext ct= (α,β) ∈G×G:

1. Compute m′ = β
αx .

2. Return m′.

The security of the system is the result of the following theorem.

Theorem 2.7.1. The semantic security of the ElGamal encryption is equivalent to the de-
cision Diffie-Hellman problem. [247]

Homomorphic Property. Consider two ciphertexts ct1 =Enc(m1) and ct2 =Enc(m2) for
some (unknown) randomness r1,r2:{

ct1 = (α1,β1) = (g r1 ,hr1 g m1),

ct2 = (α2,β2) = (g r2 ,hr2 g m2),
=⇒ u1 ×u2 = g r1 × g r2 ,β1 ×β2 = hr1 ·m1 ×hr2 ·m2,

α1 ×α2 = g r1+r2 ,β1 ×β2 = hr1+r2 · (m1 ·m2)

ct1 ×ct2 =Enc(m1 +m2)

re-Encryption Property. Additionally, ElGamal scheme, allows reEncrypting a cipher-
text without knowledge of the message and the randomness:

ct=Enc(m;random) = (α,β) = (g random,hrandom ·m)

=⇒ ct∗ = (α× g r,β×hr) = (g random+r,hrandom+r ·m) =Enc(m;random+ r)

2.7.2.2 Paillier Encryption Scheme

Paillier public-key cryptosystem is a partially homomorphic encryption scheme, and it
has IND-CPA security based on the hardness of the decisional composite residuosity as-
sumption 3. The message space in Paillier encryption is associated with Z∗

n where n is
an RSA-number, n = p · q ; (p, q ,e) ← GRSA(1ℓ) and the cipher text space C is Z∗

n2 . Con-

sider two functions λ(n) = lcm(p −1, q −1) and Ł(x) = x−1
n , Paillier encryption scheme is

described as follows:

• Key Generation:

1. Run GRSA(1ℓ) to generate two prime numbers p and q .

2. Set n = p ·q .

3. Select a random integer (generator) from Z∗
n2 .

4. Set µ= (
Ł(gλ(n)[mod n2])

)−1[mod n].

5. Set pkpaillier = (n, g) and skpaillier = (λ(n),µ).

6. Return Keypaillier = (pkpaillier,skpaillier).

2.7. Cryptographic Primitives 49

• Encryption: For message m ∈Zn :

1. Select a random number random ∈Z∗
n .

2. Set the ciphertext ct= g m · randomn[mod n2].

3. Return ct.

• Decryption: For ciphertext ct ∈Z∗
n2 :

1. Compute m′ = Ł(ctλ(n)[mod n2])
Ł(gλ(n)[mod n2])

[mod n].

2. Return m′

The security of the system is the result of the following two theorems [216]:

Theorem 2.7.2. Paillier encryption scheme is one-way if and only if the Computational
Composite Residuosity assumption holds.

Theorem 2.7.3. Paillier is semantically secure, (IND-CPA) if and only if the Decisional
Composite Residuosity assumption holds.

Homomorphic property. Consider two ciphertexts ct1 = Enc(m1) and ct2 = Enc(m2)
with two (unknown) random numbers r1,r2:

{
ct1 = g m1rn

1 [mod n2],

ct1 = g m1rn
1 [mod n2],

=⇒ ct1 ×ct2 = g m1rn
1 × g m1rn

1 [mod n2] = g m1+m2 (r1r2)n mod n2

ct1 ×ct2 = g (m1+m2)(random)n =Enc(m1 +m2)
(2.3)

re-Encryption property. Additionally, the Paillier scheme, allows re-Encrypting a ci-
phertext without knowledge of the message and its randomness:

ct=Enc(m;random) = g mrandomn[mod n2]

=⇒ ct∗ = ct× rn = g m(random× r)n[mod n2] =Enc(m;random+ r)
(2.4)

Multi-Party Computation comparison. One of the interesting properties of Paillier en-

cryption scheme that we use in our research is that it allows an efficient multi-party
computation protocol to compare and hence sort ciphertexts by plaintext values with-
out decryption [192]. Furthermore, this algorithm is linear in the bit lengths, i.e., loga-
rithmic in the security parameter, and can be made public verifiable [184].

2.7.2.3 BBS Linear Encryption Scheme

Boneh et al. presented a linear encryption (LE) scheme based on the Decision Linear
assumption in [51]. The BBS scheme has the following algorithms:

• Key Generation:

1. Run GroupGen(1ℓ) to generate G = (p,G, g).

2. Choose generators u, v ,h ∈G and integers x, y ∈Zp such that ux = v y = h.

3. Set pkBBS = (G,u, v ,h) and skBBS = (x, y).

50 Chapter 2. Building Blocks; Verifiable Functional Encryption Schemes

4. Return KeyBBS = (pkBBS,skBBS).

• Encryption: For message m ∈G:

1. Select random numbers r1,r2 ∈Zp .

2. Set the ciphertext CT= (ur1 , v r2 ,m ·hr1+r2).

3. Return CT.

• Decryption: For ciphertext CT= (α,β,γ) ∈G3:

1. Compute m′ = γ
αx ·βy .

2. Return m′

The BBS is semantically secure against a chosen-plaintext attack, assuming Decision
Linear assumption (see 6) holds in group G [51].

The security of the system is the result of the following theorem [216]:

Theorem 2.7.4. The semantic security of the linear encryption BBS is the result of the
decision Linear problem.

2.7.3 Hash Functions

As mentioned in 2.4, random oracles do not exist in the real world; hence a realistic
and practical instantiation of the Random Oracle Model is required. In modern cryp-
tography, the random oracle is instantiated with a particular cryptographic primitive
known as a hash function which maps an arbitrary finite-length string to a fixed-length
string. In practice, hash functions are commonly employed for protocol verification,
such as message integrity verification. Another application is, converting an interactive
protocol into a non-interactive variant, such as the Schnorr proof system [233](a non-
interactive version of the Sigma protocol). Merkle-Damgard is the most well-known
high-level structure for hash functions used in constructing SHA family hash functions [82,
157].

There are two types of hash functions: the first one that depends only on the bit-
string and the public parameters, known as unkeyed hash functions, and the second
type, keyed hash function that requires additional input, a key, to generate the hash
value [200].

Unkeyed Hash Function. From a structural perspective, the subclass of unkeyed hash
functions, also known as modification detection codes (MDCs), can be classified ac-
cording to the nature of the operations that comprise their internal compression func-
tions. As a result, we can classify iterated hash functions into three major categories:
block cipher-based hash functions, customized hash functions, and hash functions based
on modular arithmetic.

Keyed Hash Function. One of the well-known methods for the keyed hash function is
the Message Authentication Code (MAC) which is explicitly designed for message au-
thentication. However, prior to 1995, relatively few MAC algorithms were proposed
compared to the enormous number of MDC algorithms, possibly because the original
ideas, which were extensively implemented in practice, were appropriate.

Definition 14 (Collision-Resistant Hash Function [200]). A collision-resistance hash
function family is a tuple of PPT algorithms Πhash = 〈Setup,hash〉 domain space D =
{0,1}∗.

2.7. Cryptographic Primitives 51

• Set up is a PPT algorithm that takes as input the security parameter and generates
public parameter and the private hash key, (pp,keyhash) ← Setup(1ℓ). The public
parameter also defines the domain space, D as a subset of {0,1}ℓ.

• The hash is a deterministic PT algorithm that on inputs public parameter, hash key
and some string s ∈ {0,1}∗, outputs the hash value h ∈Dhash.

Security Requirements. Following from [200] a cryptographic hash function requires to
have the following properties:

• Preimage resistance states that it is computationally infeasible to find any input
that hashes to a any pre-specified output. Formally the following success proba-
bility is negligible for any PPT adversary A.

Succpre−image
hash,A (ℓ) = Pr

[
hash(x) = h | (pp,key) ← Setuphash(1ℓ),

x ←A(1ℓ,pp,keyhash,h)

]
< negl(ℓ)

• Second preimage resistance states that it is computationally infeasible to find any
second input which the same output as any specified input, hash(x) = hash(y).
Formally the following success probability is negligible for any PPT adversary A:

Succ2−pre−image
hash,A (ℓ) = Pr

[
hash(x) = hash(y),

x ̸= y
| (pp,key) ← Setuphash(1ℓ),

(x, y) ←A(1ℓ,pp,keyhash)

]
< negl(ℓ)

• Collision resistance states that even with a free choice of inputs, finding two dis-
tinct inputs x and y with the same hash-value is computationally infeasible. For-
mally the following success probability is negligible for any PPT adversary A.

Succcollisionhash,A (ℓ) = Pr

[
hash(x) = hash(y),

x ̸= y
| (pp,key) ← Setuphash(1ℓ),

(x, y) ←A(1ℓ,pp,keyhash)

]
< negl(ℓ)

Additional Note. We note that Collision resistance implies second-preimage resistance
of hash functions, but it does not guarantee preimage resistance.

2.7.4 Signature Schemes

Definition 15. A signature scheme with message space M is a tuple of PPT algorithms
Πsignature = 〈Setup,Sign,Verify〉 where:

• Set up is a probabilistic polynomial algorithm that takes as input the security pa-
rameter and generates public parameter (pp) ←Πsign.Setup(1ℓ). The public param-
eter also defines the message space M and rang space D. We exclude the pp from
the algorithm’s inputs while it is implicitly included to avoid heavy notation.

• Key generation is a probabilistic algorithm that on input security parameter and
the public parameters, outputs a pair of matching keys; The private key is used for
signing and the public verification key. (sksign,pkverify) ←Kgen(1ℓ).

52 Chapter 2. Building Blocks; Verifiable Functional Encryption Schemes

• Signature is also a probabilistic polynomial algorithm that takes as input a message
m ∈M and the private signing key sksign and generates a signature σ

• Verify is a deterministic algorithm that takes the verification key, some message
m ∈M and its associated signature σm and output 1 or 0.

Security Requirements. The basic notion of security for a signature scheme is unforge-
ability, which states that no PPT adversary can generate a valid signature for message m
without having the private signing key, sksign. However, when we take into account the
adversary power, more profound notions of unforgeability emerge [50]:

• Unforgeable under chosen message attacks against an adaptive adversary ver-
sus non-adaptive: In unforgeable security notion, the adversary has access to a
signing oracle; A(.)⇌S i g n(sksign). It means that the adversary can query some mes-
sage m1, . . . ,mq to the signing oracle and receive the valid signatures; {(mi ,σi)}i∈[q].
An adaptive adversary can query after receiving the verification key, pkver i f y while
a non-adaptive adversary is forced to output messages m1, ...mq it wants to see
signed, before obtaining the verification key. A signature scheme is existential un-
forgeable under chosen-message attacks adaptive (non-adaptive) , UF−cma if the
success probability of any PPT adversary A in experiment 2.6 is negligible.

• Strongly unforgeable versus unforgeable under chosen message attacks: The
term strongly unforgeable refers to an adversary winning if it outputs a message
with a valid signature such that the pair (m,σm) did not appear in the query phase.
In contrast, unforgeable indicates that the message m should not appear during
the query phase. A signature scheme is Strongly existential unforgeable under
chosen-message attacks, sUFcma if the success probability of any PPT adversary
A in experiment 2.6 is negligible.

• Existential unforgeability notions regarding q-bounded chosen-message-attack:
In addition to the previous notions, this weaker security notion, for signatures
scheme, is presented in [50], which is the same security notions above, except that
the adversary is restricted to at most q signature queries.

FIGURE 2.6: ExpsignA (1ℓ): Signature Experiment

Challenger Adversary

ppsignSetup(1ℓ)

(sksign,pkverify) ←Kgen(1ℓ)

A(mi)⇌S i g n(.)

(m∗,σ) ←A(1ℓ, {(mi ,σi)})

Success Probability:

SuccsignA (1ℓ) = Pr
[
Verify(pksign,m∗,σ∗) = 1

]{
(m∗,σ∗) ∉ (mi ,σi) : for EUF

(m∗) ∉ mi : for strong EUF

53

Chapter 3

A Brief Survey on Zero-Knowledge Proof
Systems

“ The purpose of life is to
conjecture and prove”

Paul Erdos

If you have heard the story of Alibaba and the forty Baghdad thieves,
you may be aware that there was a cave and a treasure. And the cave’s
door was sealed with a large stone, and the only way to enter was to
know the secret phrase “Open Sesame!”

And Alibaba was aware of the word. That is why the thief master
ordered him to reveal the word! A tricky situation! Indeed, it did not
seem wise for Alibaba to reveal the word because it is most likely the
thieves would kill him after that. But on the other hand, if he did not
reveal the word, they might have believed he did not know it in the
first place, and he would be killed again.

So what could he do not to die!?

We have heard more tales of Alibaba after his adventures with the
forty thieves of Baghdad, so we are guessing he went with the third
solution. He had convinced them that he was aware of the “Open
Sesame!” without telling the “Open Sesame!” However, how did he
accomplish this?

We believe he was clever enough to use a “Zero-Knowledge proof Sys-
tem”. A beautiful concept that conceals a contradiction at its core that
interwoven the notions of clarity and mystery!

54 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

Contents
3.1 Zero-Knowledge proof Systems . 55

3.2 Zero-Knowledge Proof System for NP-language 57

3.3 Zero-Knowledge Proof Systems; Variants . 58

3.3.1 Simulator with Auxiliary Input . 58

3.3.2 Perfect, Statistical, Computational ZK . 58

3.3.3 Expected Polynomial-Time Simulators . 59

3.3.4 Knowledge Tightness . 59

3.3.5 Arguments; Computationally Sound ZK . 60

3.4 Proof of Knowledge . 60

3.5 Sigma Protocol . 61

3.6 Composing Zero-Knowledge Proof Systems . 63

3.6.1 Sequential Composition . 63

3.6.2 Parallel Composition . 64

3.7 Witness Indistinguishable and Witness Hiding Proof System 65

3.7.1 Witness Indistinguishability . 65

3.7.2 Witness Hiding . 65

3.8 Non-Interactive Zero Knowledge Proof Systems 66

3.8.1 NIZK in RHB Model . 67

3.8.2 NIZK in CRS Model . 68

3.8.3 NIZK for NP-Language . 69

3.8.4 Fiat-Shamir Heuristic . 70

3.8.5 Designated Verifier Zero-Knowledge Proof Systems 70

3.8.6 Non-Algebraic Language; Rang-Proof and Proof of Shuffle 72

3.9 Non-Interactive Witness Indistinguishable Proof Systems 72

3.9.1 NIWI; Formal Definitions . 73

3.10 Groth Sahai NIWI proof System . 75

3.10.1 Groth-Sahai Technique; Overview . 76

3.10.2 Formal Description . 78

3.10.3 Groth-Sahai NIWI Proofs . 80

3.10.4 Set Up . 80

3.11 Instantiation Based on the DLin Assumption . 81

3.12 OR Statements . 85

A Zero-Knowledge proof system is one of the fascinating tools in cryptography. How-
ever, there is a contradiction hidden within the concept of Zero-Knowledge; while proof
should be convincing, it must yield no knowledge beyond the validity of the statement
being proven. In other words, obtaining Zero-Knowledge proof that a statement is true
is equivalent to being told by a trusted party that the statement is true.

Zero-Knowledge proof is introduced in the seminal work of Goldwasser, Micali, and
Rackoff [128], and became one of the essential underlying primitives in cryptography.
According to Goldreich, Micali, and Wigderson [125], the Zero-Knowledge proof is an
innovative technique to force involved parties in a protocol to adhere to it while assuring
that no secret information is leaked.

Zero-Knowledge is one of the essential ingredients we employ towards having verifi-
able, secure computations. This section, will gather basic terminology and background
knowledge we use in our research.

3.1. Zero-Knowledge proof Systems 55

3.1 Zero-Knowledge proof Systems

Recall the definition of an Interactive proof system in which two parties, the prover in
charge of the algorithm Prove and the verifier in charge of the algorithm, Verify, inter-
act with each other on some common input (x,L). Prover within an n-round interac-
tion, tries to convince the verifier that x ∈ L . We motivate a Zero-Knowledge system
as an interactive proof system by which the verifier gains “no knowledge” beyond the
statement’s validity. Before going to the formal definition, it is necessary to clarify the
meaning of “gaining no knowledge”.

Information versus Knowledge. To begin, we want to emphasize that while knowledge
(as stated below) and information (from an information theory perspective) are often
used interchangeably, we distinguish between the two. Then to better understanding
the concept, we will look into interactive Zero-Knowledge proof systems for language
L1 and L2 (See 2.3.1).

Consider the first scenario for language, L1. When Bob asks Alice if graph G is Eu-
lerian or not, whatever Alice tells Bob about the Eulerian path, Bob could have easily
obtained it by running some linear time algorithm. Therefore, here we say Bob does not
gain any knowledge in this interaction. On the other hand, in the interactive game for
language L2, Hamiltonian graph, if Alice proves to Bob that G has a Hamiltonian cycle,
that would be the knowledge that Bob gains in the game. That is because Bob does not
have an efficient algorithm to recognize the “Hamiltonian Graph” by himself. In fact,
Bob gains knowledge only if he receives some outcome from the interaction with Alice
that is infeasible for him to compute. To summarise according to [119], knowledge is
tied to computational difficulty; something is knowledge if it can be computed by an
efficient algorithm given limitless processing resources, whereas information is not.

Based on the above discussion, informally, we can define Zero-Knowledge property
as follow: We say an interactive proof system has a Zero-Knowledge property if what
can be computed by an arbitrary feasible adversary (e.g., a verifier) from the interactive
game on input x can be computed by an arbitrary feasible algorithm that is only given
the input x.

Definition 16. [Interactive Zero-Knowledge Proof System]An n-round interactive Zero-
Knowledge proof system, for the language L is a protocol between prover (Prove) and a
PPT verifier (Verify) with the following properties:

• Completeness: For very x ∈L , the verifier always outputs 1 (accept the proof) after
interacting with the prover:

∀x ∈L : Pr
[

[Verify⇌Prove(x)] → 1
]
= 1

• Soundness: For any x ̸∈ L , and any potential cheater prover, the verifier output 0
(reject the proof) with overwhelming probability:

∀x ∉L : Pr
[

[Verify⇌Prove∗(x)] → 1
]
= negl(|x|)

• Zero-Knowledge: For any x ∈ L there exist a PPT simulator algorithm, Sim, such
that the following two distributions are identical:{

V i ew
[
VerifyProve

]
(x)

}
x∈L

≡
{
〈Sim〉(x)

}
x∈L

56 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

Additional Note. According to the above definition, the zero-knowledge property re-
quires the existence of an algorithm simulating the view of any verifier. Honest-verifier
zero-knowledge proof system is a weaker concept that only requires the existence of a
simulator for a single verifier, which is the honest verifier specified in the protocol spec-
ification.

Additional Note. To evaluate the robustness of the Zero-Knowledge proof system’s def-
inition, that is, to determine if it is too weak or too strong, we first note that every pro-
gramming language has a trivial proof. On the other hand, triple theorems demonstrate
why each property in the zk definition is required:

Theorem 3.1.1 ([119]). Suppose that L has a unidirectional Zero-Knowledge proof sys-
tem, then L ∈BPP.

Theorem 3.1.2 ([119]). Suppose that L has a Zero-Knowledge proof system in which the
verifier program is deterministic, then L ∈BPP.

Theorem 3.1.3 ([119]). Suppose that L has an auxiliary-input Zero-Knowledge proof
system in which the prover program is deterministic, then L ∈BPP.

Negative results. To analyze the upper bound for IP we first consider another type of IP
the so-called Arthur-Miller game, which is a simplified version of a 3-round interactive
proof system with the following steps:

1. The verifier sends a random string to the prover.

2. The prover responds with some string.

3. Based on a deterministic computation, the verifier on common inputs and two
strings deterministically accept or reject the proof .

By AM we refer to the class of language L that can be recognized by an Arthur-miller
game.It is proved that if an arbitrary language L ∈ coNP has an Arture-Miller proof sys-
tem (coNP ⊂ AM), then it would be unlikely that the polynomial-time hierarchy would
collapse. Hence with the help of the following theorem we can define an upper bound
for the class ZKP.

Additional Note. It is believed that coNP in not contained in AM (NP is not contained
in coAM). In fact if coNP ⊆ AM then polynomial-time hierarchy would collapse which is
unlikely. On the other hand we have the following theorem:

Theorem 3.1.4 ([119]). If there exists a statistical (almost-perfect) Zero-Knowledge proof
system for a language L , then L ∈ coAM. In fact L ∈ coAM∪AM

Therefore, we conclude that if some NP-complete language L ∗ has a statistical Zero-
Knowledge proof system, then it implies every language in NP has the statistical Zero-
Knowledge proof system:

∃L complete ∈ SZK
L≺L complete

=========⇒(∀L ∈ NP : L ∈ SZK)

=⇒∀L ∈ NP : L ∈ coAM

=⇒ NP ⊂ coAM

The above argument shows that there exists some language that they do not possess
perfect Zero-Knowledge proof system.

3.2. Zero-Knowledge Proof System for NP-language 57

3.2 Zero-Knowledge Proof System for NP-language

We now need to consider the following key question:

Do Zero-Knowledge proof systems exist? Additionally, assuming this is
the case, for which languages may we have a zero proof system?

The brief answer is “yes” to the first question. Furthermore, it is clear from the defi-
nitions of the complexity classes P and BPP that we have a trivial Zero-Knowledge proof
system for each language in these classes. Because for the languages in BPP class, any
PPT verifier can recognize the language by itself. Thus, the interesting question is:

For which languages is a non-trivial zero proof system possible?

Intensive and fascinating research has been conducted to answer this question pos-
itively, assuming that a one-way function does exist.

On the other hand, it is shown in [215] that unless very weak one-way functions ex-
ist, Zero-Knowledge proofs can be given only for languages in BPP, which establish the
necessity of the one-way function for non-trivial ZK.

To demonstrate that ZK exists for all NP-languages, the authors in [124] construct a
ZK for some NP-complete language (such as, Graph coloring or Hamiltonian Graph lan-
guages) and then conclude that ZK exists for all NP-languages using the Karp reduction.
Here is a brief summary of the proof:

FIGURE 3.1: The Zero-Knowledge proof system for Graph 3-Colouring [119]

• Setting: G = (G ,V ,E ,n) : V = {1, . . . ,n} ,E = {
(i , j) : vertix i connect to j

}
Rg = {

(x, w) : x =G, w =φ : V 7→ {
blue,red,green

}
(i , j) ∈ E =⇒ φ(i) ̸=φ(j)

• Inputs: Prover x, w , Verifier: x

Prover commitment:

1. Pick a random permutation σ over
{
blue,red,green

}
2. For i = 1, . . .n commitment to the value σ(φ(i))

3. Compute Com=Com(σ(φ(i)))

Prover
Com−−−→ Verifier

Verifier challenge

Pick e = (i , j)
$←− E

Verifier
e−→ Prover

Prover respond:

Decommit to i and j by sending σ(φ(i)),σ(φ(j))

Prover
z=(σ(φ(i)),σ(φ(j)))−−−−−−−−−−−−−→ Verifier

• Verification: Verify(x,Com,e, z) accepts if and only if σ(φ(i)) ̸=σ(φ(j))

58 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

Theorem 3.2.1. [119] The protocol demonstrated in Figure 3.1 is a Zero-Knowledge proof
system, assuming the hiding and binding property of the commitment scheme.

Consider that, there is a reduction to 3-colouring language, by applying the Karp
reduction, we have the following theorem:

Theorem 3.2.2. If one-way functions exist, then every NP-language has a zero-knowledge
interactive proof system.

3.3 Zero-Knowledge Proof Systems; Variants

Modifying the requirement of a Zero-Knowledge proof system yields new variations of
the system.

3.3.1 Simulator with Auxiliary Input

In the original definition, the simulator does not take any auxiliary input [128]. In con-
trast, in the revisited definition [126], they relaxed the definition for a Zero-Knowledge
property by considering a simulator with auxiliary input, Sim(x,AuxInput), that has an
indistinguishable description from the actual protocol:

Zero-Knowledge property. For any x ∈ L , there exists a PPT algorithm; Sim called a
simulator, such that the following two distributions are identical:{

V i ew
[
Verify⇌Prove](x)

}
x∈L

≡ {〈Sim〉(x,AuxInput)
}

x∈L

This relaxation of the simulator is widely used, and a lot of the literature uses the
revisited definition to introduce the Zero-Knowledge proof system. Practically all known
Zero-Knowledge proofs are auxiliary-input Zero-Knowledge proofs. (Some examples of
the original version can be found in [121] and some with a non-black-box simulator [25])

3.3.2 Perfect, Statistical, Computational ZK

Recall that three variants of indistinguishability; Perfect, statistical and computational
indistinguishability(see 2.4.1). Each indistinguishable interpretation provides a differ-
ent form of Zero-Knowledge that has been widely investigated in the literature. [123]

• Perfect Zero-Knowledge (PZK): It requires that the following distributions to be
identical: {

V i ew
[
Verify⇌Prove](x)

}
x∈L

≡
{
〈Sim〉(x,AuxInput)

}
x∈L

• Statistical Zero-Knowledge, almost-perfect (SZK): It requires the statistical distance
of the following distributions to be negligible:

{〈Prove,Verify〉(x)
}

x∈L
static= {〈Sim〉(x,AuxInput)

}
x∈L

• Computational Zero-Knowledge (CZK): It requires that the two probability ensem-
ble to be indistinguishable by any PPT adversary:∣∣∣Pr

[
A(

{〈P ,V 〉(1ℓ)
}
) 7→ 1

]
−Pr

[
A(

{〈Sim〉(1ℓ, x,AuxInput)
}
) 7→ 1

]∣∣∣< negl(ℓ)

3.3. Zero-Knowledge Proof Systems; Variants 59

The class PZK, SZK and CZK are defined as all languages that have a perfect, statisti-
cal and computational, respectively, Zero-Knowledge proof system with a polynomial
number of rounds (in its input length). Although CZK systems are the most liberal
notion, they are very expressive and offer significant Zero-Knowledge guarantees. It is
proven that assuming one-way functions exist, and every NP-language has a computa-
tional Zero-Knowledge proof system [124], followed by a stronger result proven in [158,
34], which state that:

BPP ⊂ PZK⊆ SZK⊂ CZK= IP= PSPACE

3.3.3 Expected Polynomial-Time Simulators

Following [26] in the context of Zero-Knowledge, efficiency has also been interpreted to
imply polynomial on the average, i.e., the expected polynomial-time algorithm. Sup-
pose we fix the algorithm’s input and consider the algorithm’s running time as a random
variable (dependent on its coin tosses). In this case, we call the algorithm expected in
polynomial time its random variable the expectation is polynomial.

As mentioned in [120, 188], it is shown that this approach is quite problematic since
it is not model-independent and is not closed under algorithmic composition. However,
suppose the simulator runs in an expected polynomial (expectation is taken over the
coin tosses of the simulator) rather than strict polynomial time. In this case, we have
a new variant that we call Expected Polynomial-Time Simulators Zero-Knowledge proof
system. This yields the following formal definition:

Definition 17. If for a Zero-Knowledge proof system 〈Prove,Verify〉 the Zero-Knowledge
property holds with respect to an expected polynomial-time simulator. Namely, for every

x ∈ L the random variables
{
V i ew

[
Verify⇌Prove](x)

}
x∈L

and
{
〈Sim〉(x,AuxInput)

}
x∈L

are identically distributed, we call proof system, Zero-Knowledge with expected polynomial-
time simulators.

3.3.4 Knowledge Tightness

Knowledge tightness is a security measure specific to the Zero-Knowledge property, and
intuitively, it measures the “real security” of the proof system. In other words, it quan-
tifies how much harder the verifier must work while not interacting with the prover to
compute anything that it can compute after interacting with the prover. Thus, knowl-
edge tightness is the ratio between the simulator’s running time and the verifier’s run-
ning time in the real interaction simulated by the simulator.

Definition 18 (Knowledge Tightness [119]). Let t : N← N be a function. We say that a
Zero-Knowledge proof for language L has knowledge tightness if there exists a polyno-
mial poly() such that for every probabilistic polynomial-time verifier there exists a simu-
lator Sim such that for all sufficiently long x ∈L we have:

tSim(x)−poly(|x|)
tVerify(x)

≤ t (|x|),

where tSim(x) denotes the expected running time of the simulator on input x and
tVerify(x) denotes the running time of the verifier on input x.

60 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

Notably, the Zero-Knowledge property does not guarantee polynomial knowledge
tightness, even though all known Zero-Knowledge proofs and, more broadly, all Zero-
Knowledge properties using a single simulator with black-box access to verifier have
polynomial knowledge tightness [119].

3.3.5 Arguments; Computationally Sound ZK

In the interactive proof system, we relax the soundness property in the following way:
rather than requiring that it is impossible to fool the verifier into accepting false state-
ments, we require that it be infeasible. This property is referred to as computational
soundness, and the proof system that possesses it is referred to as an argument proof
system (or sound proof system). Compared to the proof system, the arguments proof
system has several theoretical and practical advantages. Theoretically, it is demon-
strated that Perfect Zero-Knowledge computationally sound proof systems can be con-
structed for all NP-languages under some reasonable assumption. Additionally, compu-
tationally sound proof systems are significantly more efficient than conventional proof
systems in practice.

Definition 19. An interactive system 〈Prove,Verify〉 is called a computationally sound
proof system or an argument for a language L if both prover and verifier are polynomial-
time with auxiliary input with the following property:

1. Completeness: ∀x ∈L ∃w ∈ {0,1}∗s.t .∀z ∈ {0,1}∗ :

Pr
[〈Prove(w),Verify(z)〉(x) = 1

]= 1

2. Computational Soundness: For every polynomial-time interactive machine B and
all sufficiently long x ∉L and every y and z:

Pr
[〈Prove(y),Verify(z)〉(x) = 1

]≤ 1

3

3. Zero-Knowledge: Same as definition 16.

3.4 Proof of Knowledge

We distinguish two languages, L1 and L2 for the cyclic group G= 〈g 〉 in which the dis-
crete logarithm problem is hard:

Lg : Rg = {
(x, w) : x = (G, g ,h),h = g w}

Lddh : Rddh = {
(x, w) : x = (

(g ,h), (u, v)
)
,u = g w , v = hw} (3.1)

We say Lg is a trivial language. However, for every element h ∈ G, a w ∈ Zp such that
h = g w exists due to the cyclic nature of G. Therefore, each random statement h is con-
sidered a valid statement with Rg . In other words, the proof, π does not establish the
validity (which is self-evident); rather, it establishes the asserting the knowledge of some
witness, not merely its existence. On the other hand, since NOT every tuple (u, v) is a
valid statement in language Lddh, a prover can construct proof even without knowing
the precise witness. The idea of PoK distinguishes two scenarios: in the first, the prover

3.5. Sigma Protocol 61

is aware of the validity but not necessarily of the witness, whereas in the second, the
proof establishes that the prover is aware of the witness.

In a formal framework, we capture the concept of proof of knowledge by using an ef-
ficient algorithm that uses the proof system as a black-box and outputs a valid witness,
which we define with the help of the concept message-specification functions. Further-
more, the next-message function captures the fact that the extractor has fine-grained
oracle access to the prover algorithm.

Definition 20 (Message-Specification Function[119]). Denote by Px,y ,r (m̄) the message
sent by machine P on common input x, auxiliary input y and randomness r after receiv-
ing the message m it is called the message specification function of machine P.

An oracle machine having access to the function Px,y ,r will present machine P ’s
knowledge on (x, y ,r). This oracle is referred to as an extractor, and its task is to find-
ing w , a witness for x. The extractor’s running-time must be inversely related to the
corresponding acceptance probability.

Definition 21 (Zero-Knowledge proof of Knowledge). An (n-round) interactive Zero-
Knowledge proof system, for the language L is a Zero-Knowledge Proof of Knowledge
(PoK) if it has a knowledge extraction property (with knowledge error κ), detailed as fol-
lows:

Knowledge Extraction property: If there exists an efficient algorithm Extr and a poly-
nomial poly such that for any statement x, the oracle algorithm Extract⇌Provex,w ;r runs in
expected polynomial time and satisfies:

Pr
[

w∗ ←Extract(x)⇌Provex,w ;r | R(x, w∗) = 1
]
≥ 1−κ
poly(|x|)

Additional Note. The original definition for proof of knowledge considers the extractor
with polynomial-expected running time. We obtain the strong PoK property definition
by replacing the extractor that strictly runs polynomial.

Applications. PoK has a wide variety of applications in real-world protocols; for exam-
ple, we can use PoK to develop cryptographic primitives such as non-oblivious commit-
ment schemes, non-malleable CPA, and CCA-secure cryptosystem. Additionally, it has
a wide range of applications in mutual disclosure of same data and e-voting protocols.

We summarize the result for the PoK proof system in the following theorem:

Theorem 3.4.1 ([119]). Assuming the existence of (non-uniformly) One-Way functions,
every NP-relation has a Zero-Knowledge system for proofs of knowledge. Furthermore,
inputs not in the corresponding language are accepted by the verifier with exponentially
vanishing probability.

3.5 Sigma Protocol

Sigma protocol is one of the most well-studied and popular Zero-Knowledge-proof sys-
tems, which is a three-round interactive, honest-verifier Zero-Knowledge proof of knowl-
edge for an NP-relation R.

Definition 22 (Sigma-Protocol [233]). A Sigma protocol for an NP-relation R is a public-
coin, 2-party interactive, honest-verifier and proof of knowledge that has the following
three rounds:

62 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

1. On input (x, w) ∈ R, the prover sends the commitment of values r to the verifier:

2. On input x, the verifier sends a uniformly random challenge e to the prover.

3. The prover responds to the challenge e, by sending f (x, w ,r ,e) where f is some pub-
lic function.

As a concrete example of the Sigma Protocol, we present the Schnorr Protocol.

The Schnorr Protocol. Consider the groupG= 〈g 〉 with order p for some prime number
p and some random generator g such that the discrete logarithm is a hard problem in
G 4. Then the following is a sigma protocol:

FIGURE 3.2: The Schnorr Protocol

• Setting: G = (G , g , p) :G= 〈g 〉; |G| = p,

Rg = {
(x, w) : x = (G, g ,h),h = g w

}
• Inputs: Prove : x, w , Verify : x

• Protocol:

Prover Commitment:

Round 1: Pick random
$←−Zp

Compute Com= g random

Prover
Com−−−→ Verifier

Verifier Challenge

Round 2: Pick e
$←−Zp

Verifier
e−→ Prover

Prover Respond:

Round 3: Compute z = w ×e + random

Prover
z−→ Verifier

Verification Verify(x,Com,e, z) accepts if and only if g z = he ×Com

Theorem 3.5.1. [233] The Schnorr protocol is a Sigma-Protocol. Namely, it is perfectly
complete, knowledge-extractable, and honest-verifier Zero-Knowledge proof system.

It is worth mentioning that we can transform any sigma-protocol into full-fledged
Zero-Knowledge proofs of knowledge using some standard techniques [113], at the cost
of an additional round of interaction (plus a small additive cost in the communication).
Furthermore, we may transfer any interactive sigma protocol to the non-interactive
Zero-Knowledge proof system using the Fiat-Shamir Paradigm (See 3.8.4).

Sigma Protocol for DDH-Relation. As a second example for Sigma-protocol, we demon-
strate the interactive proof system for relation RDD H . As we will see in the second part
of our research, we frequently rely on the non-interactive version of this proof to design
a verifiable e-voting protocol.

3.6. Composing Zero-Knowledge Proof Systems 63

FIGURE 3.3: Sigma Protocol for proof of knowledge of Paillier Plaintext

• Setting: GRSA = (n, p, q ,G , g),

Rg = {
(x, w) : x = (n, g ,ct), w = (m,r) ∈Zn ×Z∗

n : ct= g m × rn
}

• Inputs: Prover: (x, w), Verifier: (x)

• Protocol:

Prover Commitment:

Step 1: Pick (a,b)
$←−Zn ×Z∗

n

Compute Com= g a ×bn

Prover
Com−−−→ Verifier

Verifier Challenge

Step 2: Pick e
$←−Z

Verifier
e−→ Prover

Prover Respond:

Step 3: Compute z1 = e ×m +a mod n,

c = (e ·m +a − z1)n−1 mod n,

z2 = (b × re) · g t mod n2,

P π=(z1,z2)−−−−−−→ Verifier

Verification: Verify(x,Com,e,π) accepts if and only if g z1 · zn
2 = cte ·Com

Sigma Protocol for Proof of Knowledge of Paillier Plaintext. Since we use Paillier cryp-
tosystem and its proof of knowledge in our protocol 7, as a third example we present the
Sigma Protocol for proof of knowledge of Paillier plaintext.

3.6 Composing Zero-Knowledge Proof Systems

We now discuss Zero-Knowledge proof system composition, focusing on which prop-
erties of a proof system are kept throughout the composition, and which do not neces-
sarily remain intact. By the composition of proof systems, we refer to the execution of
many copies of the protocol, with the prescribed (honest) parties executing each copy
independently of the others. For example, if a party is required to toss coins in a particu-
lar round, it will toss independent coins for each duplicate. We consider (polynomially)
many Zero-Knowledge proof systems composed in parallel and sequential.

3.6.1 Sequential Composition

Sequential composition invokes a set of ZK proof systems multiple (polynomial) times,
with each invocation following the termination of the previous one. The interesting re-
sult, in this case, is that the ZK proof system as defined originally (simulator without

64 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

auxiliary input) is not closed under sequential composition [121]. Yet, the modified ver-
sion (simulator with auxiliary inputs) retains its Zero-Knowledgeproperty after sequen-
tial repetition. [126]

3.6.2 Parallel Composition

Parallel composition invokes a set of ZK proof systems multiple (polynomial) times si-
multaneously and proceeds at the same pace. There exist two negative results regarding
the parallel composition of Zero-Knowledge protocols. The first approach refutes the
parallel conjecture of the parallel-composition conjecture by constructing a counter-
example but does not explicitly mention the natural candidates. In contrast the sec-
ond approach establishes that there is a class of Zero-Knowledge proof systems whose
members cannot be proved Zero-Knowledge in parallel composition using a general
paradigm (known by the name “black-box simulation”) [119].

The parallel composition conjecture can also be refuted for probabilistic polynomial-
time prover (with auxiliary inputs) and statistical Zero-Knowledge proof systems.

We briefly demonstrate an example that shows the parallel composition of two Zero-
Knowledge, where the proof system is not always a Zero-Knowledge proof system.

Example [102]. Consider the Zero-Knowledge system for discrete logarithm language
in (3.1), ΠdLog = 〈Prove,Verify〉. we construct a new Zero-Knowledge proof system as
follows:

1. On input (G, g ,h), Verifier∗ tries to guess w randomly. If Verifier∗ succeeds he
sends 1; otherwise sends 0.

2. If Verifier∗ sent 1, then it proves the knowledge of w using the protocol ΠdLog. If
the prover is convinced by Verifier∗, the prover sends w to the verifier; otherwise,
the prover sends reject and terminates the protocol.

3. If Verifier∗ sent 0 in step 1, the prover proves the knowledge of w using ΠdLog.

FIGURE 3.4: A parallel composition of two Zero-Knowledge Protocol

Prover1(x, w) Verifier∗(x) Prover2(x, w)

0←−−−−−−−−−−−− 1−−−−−−−−−−−−→
Prove1 ⇌Verifier∗

πDlog−−−−−−−−−−−−→
πDlog

Verifier∗⇌Prove2

πDlog−−−−−−−−−−−−→
w←−−−−−−−−−−−−

w

The fact that all known formulations of (computational) Zero-Knowledge are not
closed under parallel composition motivates the introduction of weaker notions such
as witness indistinguishability.

3.7. Witness Indistinguishable and Witness Hiding Proof System 65

3.7 Witness Indistinguishable and Witness Hiding Proof System

Consider an interactive proof system with multiple witnesses for each statement. If the
verifier cannot determine which witness the prover employs to generate the proof, we
say the system has witness indistinguishability. Furthermore, the system is witness hid-
ing; if the verifier cannot generate any new witnesses (he was unaware of before the
protocol began) after interacting with the prover [102].

We formally define these two systems as follows where RL (x) denotes the set of wit-
nesses for the statement x.

3.7.1 Witness Indistinguishability

Definition 23 (Witness Indistinguishable Proof System). Consider an interactive proof
systemΠwi = 〈Prove,Verify〉 for an NP-language L with relation RL . We say it is witness-
indistinguishable for RL iffor every PPT distinguisher D and all z ∈ {0,1}∗ it holds:∣∣∣ Pr

[
D

(
x, z,

{
V i ew

[
Verify(z)P(w1

x)](x)
}

x∈L ,z∈{0,1}∗
)= 1

]
−Pr

[
D

(
x, z,

{
V i ew

[
Verify(z)P (w2

x)](x)
}

x∈L ,z∈{0,1}∗
)= 1

] ∣∣∣
< negl(|x|)

A stronger notion for the WI proof system defines as follows:

Definition 24 (Strong Witness Indistinguishable[119]). Interactive system 〈Prove,Verify〉
is strongly witness indistinguishable proof system for RL if for every two probability en-
semble: {

X 1
n ,Y 1

n , Z 1
n

}
,
{

X 2
n ,Y 2

n , Z 2
n

}
such that

{
X b

n ,Y b
n , Z b

n

}
ranges over (RL × {0,1}∗)∩ ({0,1}n × {0,1}∗× {0,1}∗) ,the following

holds:
If

{
X 1

n , Z 1
n

}
and

{
X 2

n , Z 2
n

}
are computationally indistinguishable, then so are

{
V i ew

[
Verify(Z 1

n)
Prove(Y1

n)]
(X 1

n)

}
n∈N

,

{
V i ew

[
Verify(Z 2

n)
Prove(Y2

n)]
(X 2

n)

}
n∈N

Additional Note. According to [119] although it is proved that any auxiliary-input Zero-
Knowledge proof system, for an NP-language is strongly witness-indistinguishable, as-
suming that one-way permutations exist, witness indistinguishability does not imply
strong witness indistinguishability.

3.7.2 Witness Hiding

A proof system for an NP-language has the witness-hiding property if the verifier after
interacting with the prover cannot find a fresh witness for the statement [102, 87, 185,
149, 93].

It should be noted that the witness hiding property only makes sense if obtaining
witnesses from scratch is impossible. As every language has instances where witness
retrieval is straightforward, we need to consider witness retrieval for specially selected
difficult instances. As a result, to capture the above pointers, we consider the concept

66 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

of “Distribution of Hard Instances”, which means for the language L correspond to the
relation RL , with the probability distribution

X = {
Xn : L ∩ {0,1}n}

,

the following holds true:

Pr[F (Xn , z) ∈ RL (Xn)] < negl(n)

Where F is a probabilistic polynomial-time (witness-finding) algorithm. Hence consid-
ering this definition a Zero-Knowledge proof system has witness hiding property; the
probability of finding the witness for a verifier remains negligible after interacting with
the prover.

Additional Note. Although in general WI does not implies witness hiding property, we
have the following result: Consider a WI proof system, 〈Prove,Verify〉 for relation R with
a PPT prover algorithm. We define the new relation as follow:

R2 := {
((x1, x2), w) : |x1| = |x2| , ∃i : (xi , w) ∈ RL

}
Then Πzk has witness hiding property for R2.

Additional Note.

1. A WI-proof system is called witness-independent if the above ensembles are iden-
tically distributed.

2. If the prover can generate proof without considering the witness in any proof sys-
tem, then the proof system is witness indistinguishable. This shows that the Wit-
ness Indistinguishability property is practically defined for the bounded prover
that takes the witness as its private auxiliary input. However, for non-trivial lan-
guage, a PPT prover cannot generate valid proof without having the witness.

3. Any Zero-Knowledge proof system also has the Witness Indistinguishability prop-
erty, while the other Witness Indistinguishable property does not always imply the
Zero-Knowledge property.

4. Although the WI proof system guarantees a weaker security level, it has many ap-
plications due to some of its properties. For example unlike the Zero-Knowledge
proof systems, a WI property is preserved in parallel compositions.

3.8 Non-Interactive Zero Knowledge Proof Systems

As stated in [33], the zero-knowledge proof system’s results are based on interactive pro-
tocols that guarantee the highest levels of real-world security in an adversarial context
without making any trust assumptions. Hence, the approach is referred to as the plain
model, and it provides the strongest real-world security guarantees in an adversarial
context. However, the ZK-Proof system cannot be used in real-world protocols such as
electronic voting or public key exchange because of its interactive nature. Indeed, due
to the large number of parties involved, even a single interaction causes a high cost on
these systems.

On the other hand, based on the impossibility result for the zero-knowledge proof
system in the plain model with a single round of interaction for non-trivial languages [126],

3.8. Non-Interactive Zero Knowledge Proof Systems 67

we know that we must either sacrifice some security property or replace it with a trusted
assumption if we wish to avoid using the interactive requirement. Given that security
is a highly desirable property, the first approach (giving up the security level) is not an
option; thus, we constructed the non-interactive zero-knowledge proof system by in-
troducing a trusted assumption captured in two different approaches: the Hidden-Bit
model and the CRS-Model.

This section will present an overview of the background and the result of the non-
interactive zero-knwoledge proof system, which we refer to as NIZK.

3.8.1 NIZK in RHB Model

In the hidden-bits model of the NIZK proof system [101, 118], the prover is initially given
a sequence of bits that are hidden from the verifier. The prover then chooses an arbi-
trary subset of these bits to reveal to the verifier. Although the verifier never learns the
unrevealed parts of the string, the prover cannot alter the values in the string it is given.
Formally assume that the prover is given the string s of length n and sends to the verifier
{si }i∈I where I ⊂ {1,2, . . . ,n} is the index set.

Definition 25 (Non-Interactive Zero-Knowledge Proof System). A pair of probabilistic
algorithms Πnizk = 〈Prove,Verify〉 is called a non-interactive zero-knowledge proof sys-
tem in RHB-model (random hidden bit) for language L if Verify is a polynomial-time
algorithm and the following conditions hold true:

• Completeness property: For very x ∈ L , the verifier always outputs 1 (accept the
proof) after interacting with the prover:

∀x ∈L : Pr
[
Verify(x, (I , sI),π) = 1 | s

$←− {0,1}poly, (π, I) ←Prove(s, x, w)
]
= 1

• Soundness property: For any x ̸∈ L , and any potential adversary A, the verifier
output 0 (reject the proof) with overwhelming probability:

∀x∗ ∉L : Pr
[
Verify(x∗, (I , sI),π) = 1 | s

$←− {0,1}poly, (π, I) ←A(s, x)
]
< negl(ℓ)

• Zero-Knowledge property: For any x ∈ L a PPT simulator algorithm, Sim exists,
such that the following two distributions are identical:{

(x, (I , sI),π)
∣∣s ← crsGen(1ℓ),π←Prove(s, x, w)

}
≈{

(x, (I , sI),π)
∣∣s $←− {0,1}poly,π← Sim(s, x)

} (3.2)

Additional Note. It is worth noting that the hidden-bits model is not intended to be
realistic; rather, it has intended to be conceptual. However, this model facilitates the
existential and constructive path toward a realistic, concrete model, the CRS-Model. To
begin, it establishes a simple abstraction for NIZK systems, which we know exist for NP-
hard languages due to the following theorem:

Theorem 3.8.1. [101] There exists a NIZK proof system in the hidden-bit model for any
NP-language (unconditionally). Furthermore, the protocol is statistical zero-knowledge
and statistically sound.

68 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

3.8.2 NIZK in CRS Model

Ivan Damgård introduced the first approach to establishing a non-interactive Zero-Knowledge
proof system that achieves a sufficient level of security in [89]. In this model, we assume
the existence of an algorithm called CRS-generator that chooses a common-reference
string in an honest way (CRS). The prover and verifier are both given access to a com-
mon string that serves as their input for generating and verifying the proof, respectively.
Formally

Definition 26 (Interactive Zero-Knowledge Proof System). A pair of probabilistic al-
gorithms Πnizk = 〈Prove,Verify〉 is called a non-interactive zero-knowledge proof system
in CRS-model (common random string) for language L if Verify is a polynomial-time
algorithm and the following conditions hold true:

• CRS-Generator: A PPT algorithm crsGen(1ℓ) exists that on input the security pa-
rameter, generates a string crs :

crs← crsGen(1ℓ)

• Completeness property: For very x ∈ L , the verifier always outputs 1 (accept the
proof) after interacting with the prover:

∀x ∈L : Pr
[
Verify(x,crs,π) = 1 | crs← crsGen(1ℓ),π←Prove(crs, x, w)

]
= 1

• Soundness property: For any x ̸∈ L , and any potential adversary A, the verifier
output 0 (reject the proof) with overwhelming probability:

∀x∗ ∉L : Pr
[
Verify(x∗,crs,π) = 1 | crs← crsGen(1ℓ),π←A(crs, x∗)

]
< negl(ℓ)

• Zero-Knowledge property: For any x ∈L there exists a PPT simulator algorithm,
Sim, such that the following two distributions are identical:{

(x,crs,π)
∣∣crs← crsGen(1ℓ),π←Prove(crs, x, w)

}
ℓ

≈{
(x,crs,π)

∣∣crs← crsGen(1ℓ),π← Sim(crs, x)
}
ℓ

(3.3)

Additional Note. According to some definitions, the simulator is composed of two algo-
rithms, Sim= (Sim1,Sim2), the first of which generates a simulated CRS, crs∗. This pro-
vides the simulator with additional power, as the simulator may generate some trapdoor
that helps in the subsequent generation of a valid proof. In this case the equation 3.4 is
replaced with:

{(x,crs,π)
∣∣crs← crsGen(1ℓ),π←Prove(crs, x, w)}ℓ
≈

{(x,crs,π)
∣∣crs∗ ← Sim1(1ℓ),π← Sim2(crs, x)}ℓ

(3.4)

3.8. Non-Interactive Zero Knowledge Proof Systems 69

Composable Zero-Knowledge: The composable zero-knowledge property was first in-
troduced in [139], strengthening the standard zero-knowledge definition in the follow-
ing way. First, it requires that an adversary cannot distinguish a real CRS from a sim-
ulated CRS. Second, it requires that the adversary, even when access to the trapdoor,
cannot distinguish real proofs on a simulated CRS from simulated proofs. This robust
security property ensures that the same common reference string can be used for mul-
tiple proofs, which enhances the proof system’s composability:

1. Reference String Indistinguishability: For all non-uniform polynomial-time ad-
versary A, the following holds true:

Pr
[
A(crs) = 1 | crs← crsGen(1ℓ)

]
≈ Pr

[
A(crs∗) = 1 | (crs∗,τ) ← Sim1(1ℓ)

]
2. Simulation Indistinguishability: For all non-uniform polynomial-time adversary

A the following holds true:

Pr

A(π) = 1∧ (x, w) ∈ Rn |
(crs∗,τ) ← Sim1(1ℓ)
(x, w) ←A(crs∗,τ)
π←Prove(crs, x, w)


≈Pr

A(π) = 1∧ (x, w) ∈ Rn |
(crs∗,τ) ← Sim1(1ℓ)
(x, w) ←A(crs∗,τ)
π← Sim2(crs, x,τ)

 (3.5)

Theorem 3.8.2. [101]Assuming the existence of trapdoor permutations and any NIZK
proof system in the hidden-bits model, we may construct a NIZK proof system in the com-
mon random string model.

Adaptive versus non-Adaptive NIZK. We consider adaptive and non-adaptive versions
of the soundness property. Adaptive soundness allows x ∉ L to be adaptively chosen
after the crs is fixed, whereas non-adaptive soundness requires the adversary to choose
the statement before seeing the crs.

Non-Interactive sigma protocol in RO model for relation ROR−DDH is shown in Figure 8.1.

3.8.3 NIZK for NP-Language

Similarly to the ZK proof system, we can establish the existence of a NIZK in two steps
for all NP-languages:

First, we build a NIZK for an NP-complete language, and then we use the Karp re-
duction to extend it to all NP-languages.

Feige, Lapidot and Shamir in [101], develop a NIZK proof system in the HBS model
for Hamiltonian-Graph language and then convert it to NIZK in the CRS model using a
technique known as the FLS technique. More recently, Groth, Ostrovsky, and Sahai [141]
presented an efficient design for Circuit-SAT based on a bilinear group that obtained
perfect zero-knowledge.

This, together with other constructs in the literature, leads to the following theorem:

Theorem 3.8.3 ([119]). Assuming the existence of one-way permutations, each language
in NP class has a non-interactive proof system that is adaptively Zero-Knowledge proof
system. Furthermore, assuming the existence of families of trapdoor permutations, the

70 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

prover strategy in such a proof system can be implemented by a probabilistic polynomial-
time machine that gets an NP-witness as an auxiliary input.

3.8.4 Fiat-Shamir Heuristic

The Fiat–Shamir heuristic, introduced in [104], is a technique that transforms an in-
teractive proof system (such as sigma-protocol) into non-interactive zero-knowledge
proofs with the help of some secure hash function(See 2.7.3).

In general, this approach replaces the verifier’s challenge (See 3.5) value with the out-
put of some random oracle that depends on the prover commitment values. This results
in reducing the interaction rounds to a single round interaction between the prover and
the verifier.

While the Fiat-Shamir approach provides an extremely efficient non-interactive ZK
proof system, the security property of NIZK is dependent on the hash function used. As
a result, we cannot always assume that the NIZK system is secure based on its security in
the RO model [69]. We refer to [32], in which the authors demonstrate that some proto-
col instantiation in the random oracle model may be proven secure, whereas some hash
functions are insufficient as a replacement for a random oracle. As such, this abstraction
should be viewed as a heuristic indicator of security.

For more details on Fiat-Shamir Heuristic approach we refer to [70].

3.8.5 Designated Verifier Zero-Knowledge Proof Systems

For many Zero-Knowledge proof systems, only the verifier designated by some secret
input (verification-key) must be convinced of the statement’s validity. In contrast to
the Zero-Knowledge proof system, the verifier does not need any extra inputs to run
the verification algorithm. The formal definition for non-interactive designated verifier
(NIDV) proofs was first introduced by Jakobsson et al. in [163] and have been used as
confirmation and denial proofs for undeniable signature schemes.

Definition 27 (Designated Verifier NIZK[178]). A designated verifier non-interactive Zero-
Knowledge proof system is a tuple of PPT algorithmsΠdv−nizk = 〈Setup,Kgen,Prove,Verify〉
such that:

• Set up algorithm outputs a common reference string, crs and the public parameters
pp, which describe the language L .

• Key generator takes as input the public parameters and returns a key pair of public
key and the verification key, vk:

(pk,sk) ←Kgen(pp)

• Prover generates the proof, π on inputs (x, w) ∈ R, L and pk.

• Verifier on input the public key, pk, the verification key, vk, statement x and the
proof π, outputs reject or accept.

which satisfies the completeness, Zero-Knowledge, and soundness properties.

Additional Note. Definition 27 shows that the verification algorithm is the primary dis-
tinction between a conventional and a designated verifier. In the latter system, the ver-
ification algorithm requires additional input, namely the verification key. In contrast,

3.8. Non-Interactive Zero Knowledge Proof Systems 71

the former allows any public party to execute the verification algorithm using the sys-
tem’s public parameters. Many protocols, such as electronic voting schemes, use the
designated-verifier proof system to demonstrate the validity of computations to the in-
dividual voter. We stress that the difference between the designated verifier and the
ordinary Zero-Knowledge proof system comes from the verification key

As an example, we present the following example from [74].

Example: A prover wishes to prove to a verifier that he knows a value w ∈ Zn such
that h = g w . Let u ∈ Jn be an arbitrary generator of Jn . Let’s define R = un mod n2

key= (pk,vk) = (E = Re ,e).
Prover steps:
T ′ = (1 + n)t Rr mod n2, X ′ = (1 + n)xE−r mod n2 and then the verifier computes

D = T e X mod n2 and D ′ = T ′e ·X ′ mod n2 and then checks that D ′ is the form (1+n)d

mod n2. If so, computes d mod n from D ′ and checks that D = g d the verifier accepts if
and only if, both checks succeeded.

3.8.5.1 Implicit Zero-Knowledge Proof Systems

Benhamoda et al.[42] introduced a new type of Zero-Knowledge proof, called implicit
Zero-Knowledge arguments and stands between two existing notions, interactive Zero-
Knowledge proofs and non-interactive Zero-Knowledge proofs.

The implicit Zero-Knowledge argument is an encapsulation mechanism that allows
masking a message to retrieve if and only if the statement is true. Additionally, iZK main-
tains the same Zero-Knowledge properties as standard Zero-Knowledge arguments. The
ability to unmask a message only leaks the validity of the statement and nothing more.

iZk can be used in two-party computations to force parties to follow the protocol.
iZK ensures the confidentiality of the parties’ inputs in a different method. However,
it does not explicitly check that the opponent behaved honestly. Rather than that, it
ensures that if this is not the case, it will be impossible for the other party to recover any
further protocol messages.

Definition 28 ([42]). The following polynomial-time algorithms define an ΠiZK:

• icrs← iSetup(crs) generates the (normal) common reference string which implicitly
contains crs). The resulting CRS provides statistical soundness.

• (icrs∗, iτ) ← iTSetup(crs) generates the (trapdoor) common reference string icrs to-
gether with a trapdoor iτ. The resulting CRS provides statistical Zero-Knowledge.

• (ipk, isk) ← iKG(icrs, x, iw) generates a pair of keys, associated with statement x ∈L
and the witness w.

• (ipk∗, itk) ← iTKG(iτ, x) generates a public and trapdoor key pair, associated with x.

• (ct,key) ← iEnc(icrs, ipk, x) outputs a ciphertext of a value key (an ephemeral key),
for x.

• key← iDec(icrs, isk,ct) decrypts the ciphertext, and outputs the ephemeral key, key.

• key← iTDec(icrs, itk,ct) decrypts the ciphertext and outputs the ephemeral key, key.

Security Notion. Implicit ZK must have correctness, setup indistinguishability, sound-
ness and Zero-Knowledge properties, which are defined similarly to other variants of

72 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

proof systems. Additionally, it requires the Setup Indistinguishability that states that the
two setup outputs should be indistinguishable.{

icrs|icrs← iSetup(1ℓ,crs)
}
ℓ
≈

{
icrs∗|(icrs∗, iτ) ← iTSetup(1ℓ,crs)

}
ℓ

We will not provide the formal definition here; rather, we will refer to the original
publication [42] for additional information.

3.8.6 Non-Algebraic Language; Rang-Proof and Proof of Shuffle

All of the ZK protocols we have discussed so far can be naturally expanded to prove a
wide range of claims, such as arbitrary algebraic relations between values. As we will see
in the second part, many of these proofs are used to demonstrate the well-formedness
of some ciphertext or commitment value. However, some languages are not classified as
algebraic languages. For example, we mention the range-proof, widely used in e-voting
protocols.

A typical technique would be to commit to every single bit of the witness, then demon-
strate that each commitment value commits to either 0 or 1, and finally demonstrate
that the relation exists. This strategy, however, is relatively inefficient.

Several solutions have been proposed to address this issue, including garbled-circuit-
based Zero-Knowledge proofs for statements expressed by boolean circuits [106, 165,
75] and Zero-Knowledge arguments with sub-linear communication based on gener-
alised Pedersen commitments [138, 137].

Due to the extensive application of electronic voting protocols to range-proofs and
proofs of shuffle, we refer readers to the following papers for additional information [61,
193, 202, 29, 28, 145, 109]

3.9 Non-Interactive Witness Indistinguishable Proof Systems

The Groth-Sahai NIWI-proof system is, indeed, a turning point in the field of zero-
knowledge proof systems.

Since the advent of ZK proof systems, it has been shown that NIZK proofs exist for all
NP-languages. However, this fact was proven existentially and not in a constructive way.
Precisely, theorem 3.8.3 was proved in the following way. First, we develop a reduction
from our language to an NP-complete language (e.g., 3-SAT or Graph colouring prob-
lem) for which proof has already had a NIZK proof system. Then we transform back the
proof from the complete language to our language using the Karp reduction. Unfortu-
nately, the system obtained in this way is an inefficient, and it is computationally too
expensive for real-world protocols and applications.

With the emergence of elliptic curves and bilinear maps in modern cryptography,
considerable effort has been spent developing ZK-proof systems over bilinear groups.
This research’s line has resulted in a fascinating and efficient NIZK proof system, begin-
ning with Groth, Ostrovsky, and Sahai’s seminal work [142] and continuing with Groth-
Sahai proof techniques [143]. Groth and Sahai present a method based on a set of equa-
tions that identifies a broad class of languages for which an efficient pairing-based NIZK
could be constructed with security based on the standard bilinear group assumption.
The Groth-Sahai proof techniques, which was subsequently updated in [117, 48], have
a significant impact on practical applications, and it is one of our primary tools for ver-
ifiable and secure computation.

3.9. Non-Interactive Witness Indistinguishable Proof Systems 73

This section formally defines a non-interactive witness indistinguishable proof sys-
tem (NIWI for short) and briefly reviews the Groth-Sahai proof techniques. Then we
point out definitions, notions and notations in this section are taken from [143].

3.9.1 NIWI; Formal Definitions

Notation We let R refer to efficiently computable ternary relation, which includes the
member of the form (gk, x, w) where gk is considered the setup group a.k.a. the pub-
lic parameter, x is the statement, and w is the witness. Compared to the binary rela-
tion, here we include the group setting as a part of the triple, which shows the system’s
flexibility. By L , we refer to the NP-language consisting of the statements x for which
witnesses w exist such that (gk, x, w) ∈ R. Groth-Sahai setting relates gk to be the de-
scription of a bilinear group which implies L should be corresponding to some bilinear
group.

Definition 29 (NIWI-Proof System). The non-interactive witness indistinguishable proof
system, Πniwi = 〈Setup,Kgen,Prove,Verify〉 for the relation R is a tuple of four probabilis-
tic polynomial-time algorithms, which fulfils the perfect completeness, perfect soundness
and composable witness indistinguishability properties as detailed below:

• Set Up is a probabilistic algorithm that takes security parameters and generates a
pair (gk,sk). We refer to the first component, gk, as a public parameter. The Groth-
Sahai setting represents the description of a pairing group setup, and the second
component sk as the secret parameter. It requires that both keys have a length poly-
nomial in terms of the security parameter.

(gk,sk) ← Setup(1ℓ)

• Key Generation is a probabilistic algorithm that outputs the CRS on input, the pub-
lic parameter and the secret key:

crs←Kgen(gk,sk)

• Prove is a probabilistic algorithm that on inputs gk,crs, x and w first checks whether
(gk, x, w) ∈ R and if so outputs a proof π:

π←Prove(gk,crs, x, w)

• Verify is a deterministic algorithm that takes (gk,crs, x,π) and outputs accept if π is
a valid proof, namely that x ∈L , or reject if that is not the case:

Verify(gk,crs, x,π) = accept / reject

Security Requirements: A NIWI proof system is required to have the following proper-
ties:

1. Perfect Completeness: The verifier always accepts the proofs generated by the
prover for the valid statement.

Pr

Verify(gk,crs, x,π) = accept |
(gk,sk) ← Setup(1ℓ)
(crs) ←Kgen(gk,sk)

π←Prove(gk,crs, x, w)

= 1 (3.6)

74 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

2. Perfect Soundness: For all adversaries A and x ∉L the following holds:

Pr

Verify(gk,crs, x∗,π) = accept |
(gk,sk) ← Setup(1ℓ)
(crs) ←Kgen(gk,sk)
(x∗,π) ←A(gk,crs)

x∗ ∉L

= 0 (3.7)

If we consider the PPT adversary, we call the proof system with the computational
soundness or an argument 3.3.5.

3. Perfect Culpable Soundness: In the original paper [143] they consider the cases,
that may require soundness against the adversary who generates a valid proof for
x∗ ∈ Lguilt instead of x∗ ∈ L̄ , where Lguilt may depend on gk and crs. Based on
this modification, they provide an alternate definition called culpable soundness.
Note that if we put Lguilt := L̄ , we get the original soundness definition as above.
Formally:

Pr

Verify(gk,crs, x∗,π) = accept |
(gk,sk) ← Setup(1ℓ)
(crs) ←Kgen(gk,sk)
(x∗,π) ←A(gk,crs)

x∗ ∉Lguilt

= 0 (3.8)

4. Indistinguishability: The standard definition of witness indistinguishability re-
quires that proofs computed on different witnesses for the same instance are com-
putationally indistinguishable. For composable witness indistinguishability we
need to use the idea of a simulated CRS to generates a simulated common ref-
erence string that is indistinguishable from a real one. Hence we first define the
CRS indistinguishability.

i. CRS Indistinguishability requires that there exists a PPT simulator Sim such
that the advantage of any PPT adversary is negligible in the following experi-
ment:

Advind−crsA (ℓ) =
∣∣∣Pr

[
A(crs,gk) = 0 | (gk,sk) ← Setup(1ℓ),crs←Kgen(gk,sk)

]
−

Pr
[
A(crs∗,gk) = 1 | (gk,sk) ← Setup(1ℓ),crs∗ ← Sim(gk,sk)

]∣∣∣
< negl(ℓ)

ii. Witness Indistinguishability states that, an adversary cannot distinguish be-
tween the proof for w0 and the proof for w1 more than a random guess on
a simulated CRS. Formally the advantage of the adversary in the experiment
ExpwiA (1ℓ) (See Figure 3.5) is negligible.

5. Zero-Knowledge: This property requires the adversary not to distinguish between
a real and a simulated CRS. In addition, it involves the use of two simulators. One
generates the crs along with a trapdoor,τ, and the other generates a proof using

3.10. Groth Sahai NIWI proof System 75

FIGURE 3.5: Witness Indistinguishability Experiment

Challenger Adversary

(gk,sk) ← Setup(1ℓ)

Cwi (g k,crs)−−−−−−−−−−→A

(x, w0, w1) ←A(gk,crs) :

(gk, x, w0), (gk, x, w1) ∈ R

Cwi (x,w0,w1)←−−−−−−−A

β
$←− {0,1}

π←Prove(gk,crs, x, wβ)

Cwi π−−−−−−−→A

β′ ←A(gk,crs,π)

Success probability: SuccwiA (1ℓ) = Pr
[
β=β′]

the simulated CRS, crs∗ such that the adversary cannot distinguish between the
real proof and the simulated proof.

∣∣Pr

[
(gk,sk) ← Setup(1ℓ); crs← Sim(gk,sk);
(x, w0, w1) ←A(gk,crs);π←Prove(gk,crs, x, w0)

: A(π) = 1 ∧ (gk, x, w0) ∈ R

]
−

Pr

[
(gk,sk) ← Setup(1ℓ); crs← Sim(gk,sk);
(x, w0, w1) ←A(gk,crs);π←Prove(gk,crs, x, w1)

: A(π) = 1 ∧ (gk, x, w1) ∈ R

]∣∣= 0.

and, ∣∣Pr
[

(gk,sk) ← Setup(1ℓ)crs←Kgen(gk,sk) | A(gk,crs) = 1
]

Pr
[

(gk,sk) ← Setup(1ℓ); crs← Sim(gk,sk) | A(gk,crs) = 1
]

< negl(ℓ).

Moreover, for all non-uniform adversaries A, it holds that:∣∣∣Pr

[
(gk,sk) ← Setup(1ℓ); crs← Sim(gk,sk);
(x, w0, w1) ←A(gk,crs);π←Prove(gk,crs, x, w0)

| A(π) = 1 ∧ (gk, x, w0) ∈ R

]
−

Pr

[
(gk,sk) ← Setup(1ℓ); crs← Sim(gk,sk);
(x, w0, w1) ←A(gk,crs);π←Prove(gk,crs, x, w1) : | A(π) = 1 ∧ (gk, x, w1) ∈ R

]∣∣∣= 0.

3.10 Groth Sahai NIWI proof System

Groth-Sahai scheme ΠGS is a NIWI-proof system under a trusted setup (i.e., in the CRS
model) for the satisfiability of four types of equations (Figure 3.7) over bilinear groups.

76 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

FIGURE 3.6: Expsim−zk
A (1ℓ)

Challenger Adversary

(gk,sk) ← Setup(1ℓ)

(crs,τ) ← Sim1(gk,sk)

Czk (g k,crs)−−−−−−−−−−→A

(x, w) ←A(gk,crs,τ)

(gk, x, w) ∈ R

C (x,w)←−−−−−−−−A

β
$←− {0,1}

If β= 1 :
(
π←Prove(gk,crs, x, w)

)
If β= 0 :

(
π← Sim2(gk,crs,τ)

)
Cwi π−−−−−−→A

β′ ←A(gk,crs,π)

Success probability: SucczkpA (1ℓ) = Pr
[
β=β′]

3.10.1 Groth-Sahai Technique; Overview

The GS proof system is developed using commitment schemes, group isomorphism that
preserves group actions, and a bilinear map. First we give an overview of the technique.

Assume that isomorphisms ιs and ρs exist between groupsAs and Bs :

s ∈ {1,2,T } : ιs :As 7→Bs , ρs : Bs 7→As

These maps are designed in such a way that they preserve both the group actions
and the bilinear map and have communicative property. Put simply; this means that
as illustrated in Figure 3.8, there are two ways to get to point aT = e(a1, a2) ∈ AT : a1 ∈
A1, a2 ∈A2 : one through groupsA1 andA2 and evaluating the bilinear map over (a1, a2)
the red path, and the other through B1,B2 the green path.

Now in order to provide proof for (x, w) ∈ REq
GS where:

Eq : e(X ,β) ·e(α,Y) = tT , (3.9)

the prover first commits to the witness componentsCom1(X) ∈B1,Com2(Y) ∈B2, which
technically means that we transfer the members ofA1,A2 to B1,B2, respectively.

The prover must demonstrate that the committed values (Com1,Com2) satisfy the
equation in the second step. This part can be proven using the commutative property.
Because the verifier only needs to perform some computations on the committed and
constant values in groups B1, B2, and BT to determine whether the target value bT is the
image of the target value aT ∈AT .

3.10. Groth Sahai NIWI proof System 77

FIGURE 3.7: The Set of Equations over bilinear groups supported by Groth-Sahai
NIWI Proof System:

• Setting:
G = (

p,G1,G2,GT ,e :G1 ×G2 7→GT
)

: |G1| = |G2| = p

• Variables:

X⃗ = (X1, . . . ,Xm) ∈Gm
1 , Y⃗ = (Y1, . . . ,Yn) ∈Gn

2 ,

x⃗ = (x1, . . . , xm′) ∈Zm′
n , y⃗ = (y1, . . . , yn′) ∈Zn′

n

• Constants:

A⃗= (Ai) ∈G1 , B⃗ = (Bi) ∈G2 ,

Γ= {γi j }i , j ∈Zn , T1 ∈GT , tT ∈GT

• Set of equations: GSEq = {Eqpp,Eqms,Eqqe},

• Eqpp: Pairing product equation

n∏
i=1

e(Ai ,Yi) ·
m∏

i=1

m∏
j=1

e(Xi ,X j)λi j ·
m∏

i=1
e(Xi ,Bi) = tT = e(R,S)

(A⃗ · Y⃗)(X⃗ ·ΓY⃗)(X⃗ · B⃗) = tT = e(R,S)

• Eqms: Multi-scalar multiplication equation in G1 :

n′∑
i=1

yiAi +
m∑

i=1

n′∑
j=1

γi j y jXi +
m∑

i=1
biXi = T

(A⃗ · y⃗)+ (X⃗ .ΓY⃗)+ (X⃗ .⃗b) = T

• Eqqe: Quadratic equation in Zn :

n∑
i=1

ai yi)+
m′∑
i=1

n′∑
j=1

γi j xi y j +
m′∑
i=1

xi bi = t mod n

(a⃗ · y⃗)(⃗x ·Γy⃗)+ x⃗ · b⃗ = t mod n

• Πniwi−GS = 〈ProveGS,VerifyGS〉: Groth-Sahai NIWI Proof System for relation RGS

RGS = {(x, w) :

x =Eq ∈GSEq,

w = ({αi } :αi ∈ (G1 ∪G2,GT)

Eq[w] =Eq[{gi }] =True

}

• Notation: By Eq[w] =True we mean that w satisfies the equation. If we need to specify the set of
solution (witness) for a specific equation, Eq, we present it by REq

GS .

78 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

FIGURE 3.8: Commutative Diagram betweenA1,A2,AT and B1,B2,BT

F (ι1(a1), ι2(a2)) = ιT (f (a1, a2))
f (ρ1(b1),ρ2(b2)) = ρT (F (b1,b2))

3.10.2 Formal Description

We now move to a formal description of the Groth-Sahai NIWI proof system. We stress
that, we explain the proof system for pairing product equation in the DLin setting, since
we will use this instantiation in our research. For more details on other equations, we
refer to the original paper. The content in this part is taken from [143].

We call an abelian group (A,+,0) aR-module for the finite commutative ring (R,+, .,0,1)
if there exist a scalar multiplication, that maps (r , x) ∈R×A to an element of r x ∈A, with
the following properties:

(r + s)x = r x + sx, r (x + y) = r x + r y , r (sx) = (r s)x, 1x = x.

For example, we can mention a prime cyclic group G,
∣∣G∣∣ = p, which can be consid-

ered a Zp -module.
Now for the commutative ring R and R-modulesA1,A2,AT equipped with bilinear

map f :A1×A2 7→AT a quadratic equations over variables x1, . . . xm ∈A1 and y1, . . . , yn ∈
A2 has the following form:

n∑
j=1

f (a j , y j)+
m∑

i=1

n∑
j=1

γi j f (xi , y j)+
m∑

i=1
f (xi ,bi) = t

where a1, . . . an ∈A1,b1, . . .bm ∈A2 and γi j ∈R.
In order to avoid the heavy notation, we define

a⃗ = (a1. . . . , an) ∈An
1 , b⃗ = (b1, . . .bm) ∈Am

2 ,Γ= [γi j]n×m ∈Rn×m .

As a result, we will obtain
a⃗ · y⃗ + x⃗ ·Γ · y⃗ + x⃗ · b⃗ = t ,

where x⃗ · y⃗ =∑n
i=1 f (xi , yi).

Commitment from Modules: Following the Groth-Sahai technique, to commit to the
elements from R-moduleA, we first define homomorphisms (R-linear)

ι :A 7→B and ρ : B 7→A,

3.10. Groth Sahai NIWI proof System 79

then we take u1, . . . ,um̂
$←− B and we let U be the space generated by elements u1, . . . ,un

i.e., U = 〈u1, . . . ,um̂〉. In fact, the public key for the commitment scheme will describe
the R-modulo B and these two homomorphisms. We require that operations in B and
computation of the map ι are efficiently computable, but ρ is hard to compute.

Then to commit x ∈ A, the algorithm picks m̂ value r1, . . . ,rm̂
$←− R and output the

following value as the commitment:

Com= ι(x)+
m̂∑

i=1
ri ui

Notation. To simplify our notation to present the commitment to elements

x1, . . . , xm ∈A,

we will write
c⃗ = ι1(⃗x)+Ru⃗ (3.10)

where

R ∈ M atm×m̂(R) , Comi = ι(xi)+
m̂∑

j=1
ri j u j .

• Commitment keys: This commitment scheme has two types of commitment keys:

• Binding key defines (B, ι,ρ,u1, . . . ,um̂) where ρ(ui) = 0 and ρ ◦ ι is nontrivial for all
i = 1. . . ,m̂.

∀i : ρ(ui) = 0 =⇒ ρ(Com) = ρ(ι(x)+
m̂∑

i=1
ri ui) =

= ρ(ι(x))+
m̂∑

i=1
ri ρ(ui)︸ ︷︷ ︸

0

= ρ(ι(x))

(3.11)

Hence the non-trivial information inside the commitment, ρ(ι(x)), make the com-
mitment is perfectly binding to x.

• Hiding key defines (B, ι,ρ,u1, . . . ,um̂) where ι(A) ⊆ 〈u1, . . . ,um̂〉:

x ∈A ∃αi ∈R : ι(x) =
m̂∑

i=1
αi ui =⇒ Com= ρ(ι(x)+

m̂∑
i=1

ri ui) =

=
m̂∑

i=1
αi ui +

m̂∑
i=1

ri (ui)

=
m̂∑

i=1
(αi + ri)ui

(3.12)

therefore, Com perfectly hides the element x since r1, . . . ,ri are chosen at random
from R.

80 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

3.10.3 Groth-Sahai NIWI Proofs

We now outline how to prove the satisfiability of pairing product equations and in Section 3.11
we briefly present the Groth-Sahai proof system under the Subgroup Decision assump-
tion and DLIN assumptions for pairing product equations.

FIGURE 3.9: Commutative Diagram for Groth-Sahai Proofs in DLin setting

3.10.4 Set Up

In the setup algorithm of the Groth-Sahai Proof System, the CRS contains the commit-
ment keys:

Com1
key = (ι1,ρ1,B1,U = 〈u1, . . . ,um̂〉),

Com2
key = (ι2,ρ2,B2,V = 〈v1, . . . , vn̂〉),

ComT
key = (ιT ,ρT ,BT),

to commit to element inA1 (A2).
Considering the above commitment scheme, the CRS and gk define the following

parameters:

gk 7→ (R,A1,A2,AT , f),

crs 7→ (
Com2

key,ComT
key,ComT

key, H1, . . . Hk
)

It is required that the maps are commutative as described in Figure 3.9 and except
ρ1,ρ2,ρT all maps are efficiently computable. To avoid confusion, we present the action
group in groups B1,B2,BT with • which results to:

x⃗ ∈Bn
1 , y⃗ ∈Bn

2 =⇒ x⃗ • y⃗ =
n∑

i=1
F (xi , yi)

The final part of the CRS is a set of matrices H1, . . . , Hk ∈ M atm̂×n̂(R) that all satisfy
u⃗ •H v⃗ = 0. The exact number k depends on the concrete setting.

Now we present two different settings:

Soundness setting: In this setting, we have the binding commitment keys:

ρ1(u⃗) = 0,ρ2(v⃗) = 0

3.11. Instantiation Based on the DLin Assumption 81

and the maps ρ1 ◦ ι1, ρ2 ◦ ι2 and ρT ◦ ιT are non-trivial.

Witness Indistinguishability Setting. In this setting we have the hiding commitment
keys:

ι1(A1) ⊆ 〈u1, . . . ,um̂〉, ι2(A2) ⊆ 〈v1, . . . , vn̂〉,
and also H1, . . . , Hk generate the R-module of all matrices H ∈ M atm̂×n̂(R) such

that:
u⃗ •H v⃗ = 0.

Considering the above setting, the first step in of Groth-Sahaiproof techniques is to
commit to all the variables x⃗ and y⃗ , c⃗ = ι1(⃗x)+Ru⃗, d⃗ = ι2(y⃗)+Sv⃗ with R ∈ M atm×m̂(R).

The second step is to show that these c⃗ and d⃗ are committed to the values that satisfy
the equation.

Formal Description. Consider the relation RGS with the equation 3.13 that has variables
x⃗ and y⃗ from groups G1 and G2.

a⃗ · y⃗ + x⃗ ·Γ · y⃗ + x⃗ · b⃗ = t (3.13)

Prover and the verifier perform the following computations:

• Prover: Choose random matrix T
$←− M atn̂×m̂(R) and r1, . . . ,rη

$←−R. Obtain:

π⃗ := R⊤ι2(⃗b)+R⊤Γι2(y⃗)+R⊤ΓSv⃗ −T ⊤v⃗ +
η∑

i=1
ri Hi v⃗

θ⃗ := S⊤ι1(a⃗)+S⊤Γ⊤ι1(⃗x)+T u⃗

and return the proof (⃗π, θ⃗)

• Verifier: Return 1 if and only if:

ι1(a⃗)• d⃗ + c⃗ • ι2(⃗b)+ c⃗ •Γd⃗ = ιT (t)+ u⃗ • π⃗+ θ⃗ • v⃗

Completeness, soundness (in the soundness setting) and witness-indistinguishable in
the (in WI setting) are proved in [143].

3.11 Instantiation Based on the DLin Assumption

this section presents an instantiation of the Groth-Sahai NIWI-proof system based on
the Decisional Linear assumption.

Recall that DLin states that given

(g , A = gα,B = gβ,C = g rα,D = g sβ, Z) ∈G6

for random α,β,r , s it is hard to tell whether Z = g r+s or is random. (See formal defini-
tion in 6).

We now describe the proof system.

• Equation in DLin Setting.

82 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

Pairing product equations:

R=Zp ,A1 =A2 =G,AT =GT , f (x, y) = e(x, y) : (A⃗ · Y⃗)(Y⃗ ·ΓY⃗) = tT

Multi-scalar multiplication in G :

R=Zp , A1 =Zp ,A2 =G, AT =G, f (x,Y) = xY : a⃗ · Y⃗ + x⃗B⃗+ x⃗ ·ΓY⃗ = T
Quadratic equations:

R=Zp ,A1 =Zp ,A2 =Zp ,AT =Zp , f (x, y) = x y : x⃗ · b⃗ + x⃗ ·Γx⃗ = t
(3.14)

• Commitment Keys. We will now describe how to commit to elements in Zp and
G.

1. The commitments will belong to theZp -module B=G3 formed by entry-wise
action.

2. For two integers α,β
$←−Zp we define

U = gα,O = 1G,V = gβ ∈G.

3. The commitment key is of the form

u1 = (A = gα,O, g),u2 = (O,B = gβ, g),

{
u3 = (Ar ,B s , g r+s); Binding Setting

u3 = (Ar ,B s , g r+s−1); Hiding Setting

And the two maps:

ι :G 7→G3 ; ι(Y) = (0,0,Y),

ρ :G3 7→G ; ρ(Z1, Z2, Z3) = Z3 ·Z
− 1
α

1 ·Z
1
β

2 .

To commit to some Y ∈Gwe pick three random numbers r1,r2,r3 and obtain

Com(Y) = ι(Y) =
3∑

i=1
ri ui .

If u1,u2,u3 are linearly independent we obtain a perfectly hiding commit-
ment scheme:

– Perfectly hiding:

Com : G 7→G3

Com(Y) = (0,0,Y)+ r1(A,O, g)+ r2(O,B , g)+ r3(Ar ,B s , g r+s−1)

= (Ar1+r r3 ,B r2+r3s , g r1+r2+r3(r+s−1) +Y)

– Perfectly binding: In case of binding key ρ ◦ ι= I
Com : G 7→G3

Com(Y) = (0,0,Y)+ r1(A,O, g)+ r2(O,B , g)+ r3(Ar ,B s , g r+s)

= (Ar1+r r3 ,B r2+r3s , g r1+r2+r3(r+s) +Y)

3.11. Instantiation Based on the DLin Assumption 83

Which is the encryption of (Z1, Z2, Z3) respect to BBS Linear-Encryption
(See 2.7.2.3) with key pk= (U ,V ,H= gαβ),sk= (α,β).

To commit to an exponent, an integer, x ∈Zp , we define, u = u3+(0,0, g), ι(x) =
xu and ρ(c1,c2,c3) = logg (c3 − 1

αc1 − 1
βc2) and then the commitment is

Com(x) = wu + r1u1 + r2u2.

• Common Reference String: We consider (A1 =A2 =AT =Zp) for exponents, (A1,A2 =
Zp ,AT =GT) for group elements and (B1 =B2 =G3,BT =G9

T) for the target groups.
Considering the original bilinear map e :G×G 7→GT defined by the group genera-
tor G(1ℓ), we define the following bilinear maps:

F̃

x1

x2

x3

 ,

y1

y2

y3

=
 f (x1, y1) f (x1, y2) f (x1, y3)

f (x2, y1) f (x2, y2) f (x2, y3)
f (x3, y1) f (x3, y2) f (x3, y3)

 :

F = (x, y) = 1

2
F̃ (x, y)+ 1

2
F̃ (y , x).

where:

For exponents: x, y ∈Zp : f (x, y) = x · y mod p

For group elements: x, y ∈Zp : f (x, y) = e(x, y)

We use the notation • and •̃ for F and F̃ respectively, as the underlying bilinear
maps.

• Maps for each equation

1. Pairing Product Equation:

ιT (z) :Zp 7→G9, ιT (z) =
1 1 1

1 1 1
1 1 z


ρT :G9 7→Zp , ρT (

z11 z12 z13

z21 z22 z23

z31 z32 z33

) = z33z
− 1
α

13 z
− 1
β

23

(
z31z

− 1
α

11 z
− 1
β

21

)− 1
α
(
z32z

− 1
α

12 z
− 1
β

22

)− 1
β

H-matrices for F :

H1 =
 0 1 0
−1 0 0
0 0 0

 , H2 =
0 0 1

0 0 0
0 −1 0

 , H3 =
0 0 0

0 0 1
0 −1 0


2. Multi Scalar Equation:

ιms
T (Z) :Zp 7→G9,ιms

T (Z) = F̃ (ι′(1), ι(Z)) = F̃ (u, (O,O,Z))
ρms

T :G9 7→Zp , ρms
T = e−1(ρT (z)) where e−1(e(g ,Z)) :=Z .

In the soundness setting ρms
T · ιms

T = IG
3. Quadratic Equation in Zp

84 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

˜ιT q(z) :Zp 7→G9, ιqT (Z) = F̃ (ι′(1), ι′(z))
ι
q
T (z) :Zp 7→G9, ι

z.q
T (Z) = F̃ (ι′(1), ι′(z))

ρ
q
T :G9 7→Zp , ρ

z.q
T = loge(g ,g)(ρT (z)).

In the soundness setting ρqT · ιqT = IZp

• NIWI proof

1. Setup: G(1ℓ) 7→ gk= (p,G,GT ,e, g)

2. Soundness String On input gk return crs := (u1,u2,u3) for random integers

α,β
$←−Z∗

p and r , s
$←−Zp

u1 = (A = gα,O, g),u2 = (O,B = gβ, g),u3 = (Ar ,B s , g r+s−1) = r u1 + su2

3. Witness Indistinguishability String: On input gk return crs := (u1,u2,u3) for

random integers α,β
$←−Z∗

p and r , s
$←−Zp

u1 = (A = gα,O, g),u2 = (O,B = gβ, g),u3 = (Ar ,B s , g r+s) = r u1+su2−(O,O, g)

• Prover: On input x = gk,crs,E and w = x⃗, Y⃗ , the algorithm takes the following
steps:

1. Commit to the integers x⃗ ∈ Zm
p and the group elements Y⃗ ∈ Gn by randomly

choosing R
$←− M atm×2(Zp) and S

$←− M atn×3(Zp) returns c⃗, d⃗ :

c⃗ = ι′(⃗x)+Rv⃗ , d⃗ = ι(Y⃗)+Su⃗

2. For each pairing product equation of the form, (A⃗ · Y⃗)(Y⃗ ·ΓY⃗) = tT generates

a proof using the map F and random integers r1,r2,r3
$←−Zp :

Φ⃗ := S⊤ι(A⃗)+S⊤(Γ+Γ⊤)ι(Y⃗)+S⊤ΓS(u⃗)+
3∑

i=1
ri Hi u⃗

for each linear equation A⃗ · Y⃗ = tT , by using map F̃ generates the proof:

π⃗= 0⃗, θ⃗ = S⊤ι(A⃗)

3. For each multi-scalar multiplication equation generates a proof using the map

F and random integers r1,r2,r3
$←−Zp to build R, and we let R ′ be R 3.10 with

an appended 0-row. The proof is:

Φ⃗ := (R ′)⊤ι(B⃗)+ (R ′)⊤(Γ)ι(Y⃗)+S⊤ι′(a⃗)+S⊤Γ⊤ι′(⃗x)+ (R ′)⊤ΓSu⃗ +
3∑

i=1
ri Hi u⃗.

• Verifier: The verifier needs to check if the following equation does hold on input
(gk,crs), c⃗, d⃗ and proof Φ for each equation as follows:

1. For each pairing product equation:

ι(A⃗)• d⃗ + d⃗ •Γd⃗ = ιT (tT)+ u⃗ • Φ⃗.

3.12. OR Statements 85

2. For each linear equation A · Y⃗ = tT :

ι(A⃗)•̃d⃗ = ιT (tT)+ ιT (tT)+ ι(φ⃗)•̃u⃗.

3. For multi-scalar multiplication:

ι′(a⃗)• d⃗ + c⃗ • ι(B⃗)+ c⃗ •Γd⃗ = ιms
T (T)+ u⃗ • Φ⃗.

4. For each linear equation a⃗ · Y⃗ = T :

ι(a⃗)′•̃d⃗ = ιms
T (T)+ ι′(Φ⃗)•̃u⃗.

5. For each linear equation x⃗ · B⃗ = T :

ι(⃗c)•̃ι(B) = ιms
T (T)+ v⃗ •̃ι(Φ).

6. For each quadratic equation:

c⃗ • ι′(⃗b)+ c⃗ •Γc⃗ = ι′T (t)+ v⃗ • Φ⃗.

7. For each linear equation x⃗ · b⃗ = t :

c⃗ •̃ι′(⃗b) = ι′T (t)+ v⃗ •̃ι(Φ⃗).

Theorem 3.11.1. [143] The above protocol is a NIWI proof with perfect completeness,
perfect soundness and composable witness-indistinguishability for satisfiability of a set
of equations over a bilinear group where the DLin problem is hard.

Additional Note. In the improvement of Groth-Sahai technique in [96] they replace re-
place some of the commitments with ElGamal encryptions, which reduces the prover’s
computation and for some types of equations, reduces the proof size in SXDH setting 8,
the one that we will use in section 8.

3.12 OR Statements

1Some of our relations of Section 5.4 consist of a generalized form of disjunction (OR)
of two predicates, let us say P1 and P2. Suppose that we have equivalent systems of
equations for each of the two predicates that are a system of equations E1 (resp. E2)
representing predicate P1 (resp. P2). Consider the following relation:

ROR ={
(x, w)| x = (E1,E2), w = (idx, w1, w2) : idx ∈ {1,2} ∧

(Eidx, widx) ∈ RE ∧ w ¯idx ∈G3},

where ¯idx means {1,2}/{idx}.
Notice that the relation is not exactly a disjunction of pairing product equations be-

cause we need to make sure that the statement that holds is the one selected by the
index in the witness, so we cannot use the technique of Groth [139] and we will follow a
different approach.

1This section is part of our publication in [242]

86 Chapter 3. A Brief Survey on Zero-Knowledge Proof Systems

By hypothesis, PGS takes as input a system of equations E as a statement and a so-
lution (g1, . . . , gm) as a witness and provides a NIWI-proof of membership of (E, w) ∈ RE .
Therefore, to use NIWIGS to generate a NIWI-proof for relation ROR , we need to define a
third system of equation EOR with the following properties:

1. EOR ≈ ROR . With this notation, we mean that there are two efficiently computable
functions f and g such that:

∃w = (idx, w1, w2)
(
x = (E1,E2), w

) ∈ ROR ⇔∃w̃
(
EOR = f (x), w̃

) ∈ RE .(
x, w

) ∈ ROR ⇒ (
f (x), g (x, w)

) ∈ ROR .

The latter properties guarantee that a proof for relation ROR computed using NIWIGS
satisfies completeness and soundness. For WI to hold, we need the following prop-
erty.

2. The function f is efficiently invertible.

Now we show how to construct the system of equations EOR with the properties above.
Consider two systems of pairing product equations E1 and E2 - same structure as in 3.7.
For simplicity, we assume the equations are over two variables (the general case is straight-
forward).

E1 : e(X1, a1) ·e(X2, a2) = τ1 ,E2 : e(Y1,b1) ·e(Y2,b2) = τ2

We define the new system of equations EOR with 4 new variables Z11,Z12,Z21,Z22 as
follows:

EOR :



e(X1, a1) ·e(X2, a2) ·e(Z11,Z12) = τ1

e(Y1,b1) ·e(Y2,b2) ·e(Z21,Z22) = τ2

e(Z11,Z22) = 1

e(Z11, g) ·e(Zidx, g) = e(g , g)

e(Z22, g) ·e(Zidx, g) = e(g 2, g)

Analysis of the equations: Consider

(Zidx ←- g idx,X1 ←- g1,X2 ←- g2,Y1 ←- g3,Y2 ←- g4,Z11 ←- g11, . . . ,Z22 ←- g22)

as a solution for EOR. So, there exist values idx, z11, z22 ∈Zp such that

g idx = g idx, g11 = g z11 , g22 = g z22

and for t ∈ [k] there exist values αt such that τt = e(g ,αt).

• e(Z11, g) ·e(Zidx, g) = e(g , g) ⇒ e(g z11+idx−1, g) = 1

⇒ z11 = 1− idx and similarly z22 = 2− idx.

• e(Z11,Z22) = 1 ⇒ (z11 = 0 ∨ z22 = 0)

• z11 = 0 ∧ z11 = 1− idx⇒ e(X1 ←- g1, a1) ·e(X2 ←- g2, a2) = τ1

⇒ (E1[g1, g2] =True ∧ idx= 1)

• Similarly, z22 = 0 ∧ z22 = 2− idx

⇒ e(Z21,Z22) = 1 ⇒ (E2[g3, g4] =True ∧ idx= 2)

3.12. OR Statements 87

The above facts imply that:

EOR[(g idx, g1, . . . , g4, g11, . . . , g22)] =True⇒(
(E1[g1, g2,α1] =True ∧ idx= 1

)
∨

(
E2[g3, g4,α2] =True ∧ idx= 2)

)
,

as it was to show. It is also easy to see that the previous transformation is efficiently
invertible.

For the other direction, suppose w.l.o.g that w1 = (g1, g2,α1) is a solution to x = E1

(the other case is symmetrical, and we omit it), namely (x, w1) ∈ R, . Suppose also that
w2 = (g3, g4,α2) ∈ G3 is an arbitrary triple of elements of G. Therefore (1, w1, w2) is a
witness to (E1,E2) with respect to relation ROR . Then, setting

(Zidx ←- g 1,X1 ←- g1,X2 ←- g2,Y1 ←- g 0,Y2 ←- g 0,Z11 ←- g 0,Z12 ←- g 1,Z21 ←-α2,Z22 ←- g 1),

we have that:
EOR[(g idx, g1, . . . , g4, g11, . . . , g22)] =True.

(Notice that we implicitly defined a transformation g as needed.)

OR proof in the general case. If the number of pairing products (m) in each of the two
equations is greater than 1, such as:

E1 :
{

e(X1, a1) ·e(X2, a2) = τ1

e(X1, a′
1) ·e(X2, a′

2) = τ′1
, E2 :

{
e(Y1,b1) ·e(Y2,b2) = τ2

e(Y1,b′
1) ·e(Y2, a′

2) = τ′2
then EOR can be defined as:

EOR :



e(X1, a1) ·e(X1, a2) ·e(Z11,Z12) = τ1

e(X1, a′
1) ·e(X2, a′

2) ·e(Z11,Z13) = τ′1
e(Y1,b1) ·e(Y2,b2) ·e(Z21,Z22) = τ2

e(Y1,b′
1) ·e(Y2,b′

2) ·e(Z23,Z22) = τ′2
e(Z11,Z22) = 1

e(Z11, g) ·e(Zidx, g) = e(g , g)

e(Z22, g) ·e(Zidx, g) = e(g 2, g)

89

Chapter 4

Perfect Inner Product Encryption
Schemes

“One of the basic rules
of the universe is that
nothing is PERFECT.”

Stephen Hawking

The path toward developing a functional encryption scheme capable of han-
dling all polynomial-time predicates began with an Identity-Based Encryption
scheme, and it has a steppingstone, Inner Product Encryption scheme.
In this section, we formalize the concept of the Inner product encryption
scheme as a particular case of the functional encryption scheme. We begin
by reviewing the definition and various security concepts in the context of a
functional encryption scheme, and then we present our perfectly correct inner
product encryption scheme.

Contents
4.1 Functional Encryption Scheme . 90

4.1.1 Introduction . 90

4.2 Functional Encryption; Formal Definition . 91

4.2.1 Security Notions in the Context of FE . 92

4.3 Sub Classes of Functional Encryption Scheme . 96

4.3.1 Identity-Based Encryption Scheme . 96

4.3.2 Predicate Encryption Scheme . 97

4.3.3 Attribute-Based Encryption Scheme . 97

4.3.4 Hidden Vector Encryption Scheme . 98

4.4 Inner Product Encryption Scheme . 99

4.4.1 IPE; Variants . 100

4.5 Technical Overview . 101

4.5.1 Verification Algorithms . 101

4.5.2 Achieving Perfect Correctness . 102

4.5.3 IPE; Formal Definition . 104

4.5.4 Security Notion for IPE . 106

4.6 Perfectly Correct IPE . 106

4.6.1 Perfect Correctness Property . 109

4.7 Security Proof . 110

90 Chapter 4. Perfect Inner Product Encryption Schemes

4.1 Functional Encryption Scheme

Functional encryption is a new encryption paradigm that emerged from a series of re-
finements of the traditional encryption concept, namely, the “all-or-none” approach to-
ward “fine-grained access” to information. In other words, it enables the data owner to
control how much of the data each user can access in a decentralized fashion. The con-
cept of Functional encryption (FE for short) was first proposed by Sahai and Waters [229]
and formalized independently by Boneh, Sahai and Waters [55] and O’Neil [214], and
later, new perspectives on security definitions for functional encryption, presented in [14,
133].

4.1.1 Introduction

Informally in an FE scheme, the holder of the master secret key (MSK) can issue tokens
associated with some function f . Later this token, tok f , allows a user to learn the func-
tion of the original message, f (m) rather than the message m itself. Furthermore, the
security notion of FE guarantee that only f (m) is learnt about m and nothing else.

As with classical encryption, functional encryption is classified into two broad cat-
egories: private settings, also known as symmetric FE, which use a single master key
MSK, and public-key settings, which use a pair of master keys (MPK,MSK), the public
master key and the secret master key.

In public-key FE, anyone can encrypt the message using the master public key, while
only the owner of the secret token can retrieve an evaluation of the original message.
In contrast, there is no master public key in the private setting, and the encryption
algorithm also requires some secret input to encrypt the message [23, 24]. Therefore,
we stress that our research mainly focuses on the public-key setting for the functional
encryption scheme.

Prior to the formal introduction of the functional encryption scheme, there had been
cryptosystems that may be considered special cases of Functional encryption schemes.

It is straightforward to see that, Identity-Based Encryption [53, 81, 234], Hidden Vec-
tor Encryption, public-key encryption with keyword search [59, 6], attribute-based en-
cryption [18, 229, 47, 134], and predicate encryption [56, 189, 173, 213], can be elegantly
expressed as a functional encryption scheme with particular functionalities.

Regardless of the examples given above, achieving generic functional encryption
that provides an adequate level of security for any functionality is a complex and diffi-
cult research subject. Some existing constructions are based on strong and impractical
assumptions, while others restrict the security notion.

For instance, the FE proposed in [114, 116] and [62, 115] is based on multi-linear
maps and indistinguishability obfuscation, respectively. Additionally, as an example of
restriction security notion, we can mention FE schemes in [130, 133, 228], which put
an upper bound on the number of tokens that the adversary can query. As a result of
the above argument, we can conclude that investigating functional encryption schemes
with specific functionality would be more promising.

Outline. In Section 4.2 we give a formal introduction of a functional encryption sys-
tem and its security notion. Following that, in Section 4.3 we present a brief overview
of some sub-classes of FE. In Section 4.4, we formally introduce the inner product en-
cryption scheme. In Section 4.5 we present a technical overview of our research process
toward building a perfect correct IPE. This section explains our study methodology by

4.2. Functional Encryption; Formal Definition 91

highlighting the challenge involved with perfect correctness. Following the technical
overview, we present our perfect internal product encryption scheme in Section 4.6.
Finally, this chapter ends with a security proof of our system based on the standard as-
sumptions in Section 4.7. We would like to emphasize that the research presented in
this chapter was previously published in (PKC-2020) [242]1.

4.2 Functional Encryption; Formal Definition

For ℓ ∈ N, let F = {Fℓ}ℓ, K = {Kℓ}ℓ,M = {Mℓ}ℓ and R = {Rℓ}ℓ denote ensembles of
finite sets with index of security parameter ℓ ∈N. The functionality ensemble F = {Fℓ}ℓ
is defined over (Kℓ,Mℓ) which is a collection of functions f described as a (determin-
istic) Turing machine:

f ∈Fℓ , f : Kℓ×Mℓ 7→Rℓ.

The ensemble K= {Kℓ} is called the key space, and Mℓ is called the message space. We
define the functional encryption scheme concerning to the functionality F as follows:

Definition 30 (Functional Encryption Scheme). A functional encryption scheme (FE)
for the class of functionalityF is a tuple of PPT algorithmsΠFE = 〈Setup,TokGen,Enc,Dec〉,
detailed as below:

• Set up is a probabilistic algorithm that takes security parameters and generates a
pair of master public key and master secret key:

(MPC,MSK) ← Setup(1ℓ).

• Token generator is a probabilistic algorithm that on input master keys and the
function f ∈Fℓ, output the token tok f :

tok f ←TokGen(MSK, f).

• Encryption is a probabilistic algorithm that encrypts message m ∈Mℓ with respect
to the master public key:

ct←Enc(MPK,m).

• Decryption is a deterministic algorithm that takes a ciphertext, ct, function f ∈
Fℓ and its secret token, tok f , as input and outputs a value from the range set or a
symbol ⊥ as a sign of the failure:

Dec(ct,tok f) 7→ y ∈Rℓ Or ⊥.

Security Properties. A functional encryption scheme requires to have the following prop-
erties:

• Correctness: The output of the decryption algorithm is evaluation of the original
message, m, for all function f ∈ Fℓ, except with negligible probability over the
randomness of set up , token-generation and encryption algorithms:

Pr

Dec
(
tok f , f ,ct

)= F (f ,m) = f (m) |
(MPK,MSK) ← Setup(1ℓ)

ct=Enc(MPK,m)
tok f ←TokGen(MSK, f)

 ≥ 1−negl(ℓ)

1The International Conference on Practice and Theory of Public-Key Cryptography (PKC)

92 Chapter 4. Perfect Inner Product Encryption Schemes

• Security: Intuitively, FE’s security captures that given the encrypted message m
and the token for function f , the only information the adversary learned is eval-
uation f (m). In addition to the security requirement in traditional encryption,
functional encryption needs to be secure in the presence of key holder collusion,
which means that malicious users should not be able to combine their secret keys
to obtain unauthorized information [14].

Moreover, when it comes to security in the context of a functional encryption
scheme, we need to consider the “security guarantee” and “the adversarial model”,
and the level of privacy regarding to the functionality and its token.

In the following, we present the formal definition and framework for security no-
tion in the context of functional encryption schemes in the various models.

4.2.1 Security Notions in the Context of FE

Two approaches capture the security notion for functional encryption scheme; simulation-
based security, (denoted by SIM-based) and indistinguishability-based security, a.k.a.,
game-based security, (denoted by IND-based), both of which can be considered with
the flavor of adaptive versus non-adaptive, one versus many and fully versus selectively
secure [55, 133, 214].

4.2.1.1 Simulation-Based Security

Simulation-based security requires that an efficient algorithm, simulates the adversary’s
view. This simulator, only has access to the token-generator oracle and some function
evaluation on the corresponding message, m. It does not, however, receive the message
m as input. As a result, if the PPT adversary cannot distinguish between its real view
and the simulation view provided by the simulation, it implies that the adversary cannot
learn anything other than message evaluation because the simulator does not know the
message m.

Simulation-based security notion also has different flavours; here, we give a formal
definition for the many-message simulation-based security against an adaptive adver-
sary, which is the strongest notion of security.

Consider two experiments in Figure 4.1; the left is the real game between the adver-
sary, and the challenger and the right is between the adversary, and the simulator.

4.2. Functional Encryption; Formal Definition 93

FIGURE 4.1: Many-message Simulation-based experiments against
adaptive adversary

ExprealA (1ℓ) ExpideaA (1ℓ)

1: (MPK,MSK) ← FE.Setup(1ℓ) 1: MPK← Sim(1ℓ)

2: ({mi }i∈[l],st) ←A⇌TokGen(MSK,.)
1 (MPK) 2: ({mi }i∈[l],st) ←A⇌Sim(.)

1 (MPK)

3: cti ← FE.Enc(MPK,m) for all i ∈ [l] 3: cti ← Sim⇌Umi (1ℓ,1|m|) for all i ∈ [l]

4: α←A⇌TokGen(MSK,.)
2 (MPK, {cti }i∈[l],st) 4: α←A⇌Sim(.)

2 (MPK, {cti }i∈[l],st)

5: Output ({mi }i∈[l],α) 5: Output ({mi }i∈[l],α)

We distinguish between these experiments and we have the following definition:

Definition 31. [Many-message Simulation-based experiments against adaptive adver-
sary [14]] Consider the functional encryption schemeΠFE for a family of functionality F .
Let Ux(.) denote the universal oracle that:

f ∈F : Um(f) 7→ f (m).

Consider the two experiments in Figure 4.1 for a PPT adversary A= (A1,A2) and a state-
ful PPT simulator Sim where l = poly(ℓ) is a positive integer. The functional encryption
scheme ΠFE is then said to be simulation-secure for many messages against adaptive ad-
versaries if there exists an admissible stateful PPT simulator Sim such that for every PPT
adversary A = (A1,A2), the following two distributions are computationally indistin-
guishable: {

ExpFE−realA (1ℓ)
}
ℓ∈N ≈

{
ExpFE−idealA (1ℓ)

}
ℓ∈N

Additional Note. Other versions for specifying simulation-based security for FE exist in
the literature; In some of them, the simulator is given Oracle access to A2, allowing it to
“rewind” the adversary and adaptively reconstruct the view. Furthermore, several defi-
nitions of the simulator rely on a “trapdoor” information obtained via faking the setup
parameters. We refer to [55, 133, 214] for more detail.

Negative Result. Although the simulation-based secure functional encryption scheme
guarantees a high level of security, the well-studied research has been shown that some
functionality cannot have simulation-based security even with the weak variants:

Theorem 4.2.1. There exist a circuit family C for which there is no 1-message simulation-
based-secure functional encryption scheme against non-adaptive adversary. [14]

It is worth mentioning that their simulation-based secure FE is achievable in the ran-
dom oracle model; we refer to [55, 71, 159] for more on the subject.

Negative results in simulation-based secure FE led to establishing a more realistic
notion for the security of a functional encryption scheme, namely IND-based security.

94 Chapter 4. Perfect Inner Product Encryption Schemes

4.2.1.2 IND-Based Security

In IND-base security a.k.a. game-based security, the security’s notion is captured through
an interactive game between challenger C fe and a PPT adversary A. The adversary at-
tempts to guess some secret random bit chosen by the challenger, by inquiring about
the secret token tok fi for the function fi .

Definition 32. A functional scheme ΠFE is IND-CCA-secure against adaptive adversary

if for all PPT adversary, the advantage of A in the experiment, Expind−cpaA (1ℓ)(Figure 4.2)
is negligible.

Variants of Security. Considering the definition 32, we can classify functional encryp-

tion scheme into the following categories:

• CCA versus CPA: IND-CPA secure, functional encryption scheme is identical to the
IND-CCA except that the adversary does not access the decryption oracle in CPA-
security. Precisely to adopt the experiment in Figure 4.2, we need to delete the
decryption query in both phases 1 and 2.

Additional Note. Agrawal et al. [11] proposed the first adaptively secure (IND-
CPA) schemes under the learning with errors (LWE), DDH (See 5), and DCR (See 3)
assumptions; In 2017, Zhang [264] and Benhamouda [41] proposed IND-CCA func-
tional encryption schemes against active adversaries.

• 1 versus Many: In definition 31 the adversary can query many, namely l ∈ N to-
ken where l = poly(ℓ) for some polynomial poly. The weaker security notion is
1-message simulation-based security in which the adversary is allowed to output
only one message, namely, l = 1.

• Adaptive versus non-Adaptive: If the adversary cannot query after receiving the ci-
phertext (skip step 4 in experiment 4.1) then the experiment captures the simulation-
based security against non-adaptive adversaries.

• Fully versus Selective A weaker notion of IND-based security, so-called selective se-
curity, does not allow the adversary to choose m0 and m1 adaptively after inquir-
ing about some token; instead, the adversary must choose the challenge messages
before obtaining any token or seeing the master public key. As a result, the query
phase 1 in experiment 4.2 is removed under this security model, and the challenge
phase occurs either after or before the Setup phase.

Additional Note. Although the IND-secure functional encryption scheme scheme
in selective mode is weaker than the functional encryption scheme against an
adaptive adversary, a transformation is proposed in [16] for converting a selec-
tively secure FE to a fully secure FE.

• Function hiding: Intuitively, functional hiding means that a secret token tok f does
not reveal any more information on the function f except what is implicitly leaked
by f (m). We can highlight anonymous-IBE as a fascinating and practical example
of functional hiding property.

4.2.1.3 Multi-Input FE

A more general notion of the functional encryption scheme is a multi-input functional
encryption scheme, which can be considered in two categories:

4.2. Functional Encryption; Formal Definition 95

FIGURE 4.2: IND-CCA Security Game: ExpfeA(1ℓ)

• Setup Phase. The challenger C fe generates the pair (MSK,MPK) by invoking the setup algorithm
on input (1λ). Then C fe sends MPK to A.

C fe MPK−−−−−−−→A

• Token Query Phase 1. A adaptively query token and decryption are as follows:

– Token key query:

fi←−−−−− A(1ℓ,pk)

tok fi ←TokGen(MSK, .)

C fe tok fi−−−−→

– Decryption query, A chooses a ciphertext ct and f ∈F , then the challenger computes tok f ←
TokGen(MSK, f), computes z=Dec(ct,tok f) and sends back z to A.

ct, f j←−−−−−−− A(1ℓ,pk)

tok f ←TokGen(MSK, f j)

z←Dec(tok f j ,ct)

C fe z−−−−−→

• Challenge Phase. A sends to the challenger two messages m0,m1 ∈M of the same length such
that f (m0) = f (m1) for all queried functions f the adversary has queried in the query phase 1.

C fe (m0,m1)←−−−−−−A

• Challenge Respond. C fe flips a coin to generate random bit β and send ct∗ =Enc(MPK,mβ).

C fe ct∗−−−−−−→A

• Query Phase 2. Query Phase 2: same as Query Phase 1, except that the challenger responds to
token-query for function fi is fi (m0) = fi (m1)

• Output Phase. Adversary outputs a bit β∗.

C fe β∗
←−−−−−A

• Winning Condition, Success and Advantage. Adversary wins the game if β=β∗ and the following
condition is met. It is required that if m0 ̸= m1, fi (m0) = fi (m1) for all the function fi queried in
both query phases 1 and 2. If the winning condition is satisfied, the output of the game is 1 or 0
otherwise. The following are the definitions for the success probability and the advantage of the
adversary:

Succind−cpa
FE,A (ℓ) = Pr

[
β=β∗]

, Advind−cpa
FE,A (ℓ) = |Pr

[
β=β∗]− 1

2
|,

96 Chapter 4. Perfect Inner Product Encryption Schemes

• Multi Input FE is a more general notion of FE, introduced by Goldwasser in [131].
In a MI-FE scheme, given ciphertexts:

ct1 =Enc(m1),ct2 =Enc(m2), . . . ,ctk =Enc(mk)

the owner of the secret token tok f for function f , can run the decryption algorithm
to evaluate

Dec(ct1, . . . ,ctk ,tok f) 7→ f (m1, . . . ,mk)

MI-FE is incredibly beneficial in a wide variety of real-world applications, such
as cloud-based calculations and electronic voting protocols. Unfortunately how-
ever, there are relatively few operational MI-FE schemes. For example, the MI-FE
schemes proposed in [131, 22, 15, 62] are unsuitable for real-world applications
since all rely on quite unrealistic assumptions, such as indistinguishability obfus-
cation or multi-linear maps.

An efficient MI-FE in the symmetric setting is proposed in [24], which enables the
computation of the sum of the components of an encrypted vector; besides, it can
be used to embed FE into the problems of order revealing encryptionand differen-
tially private databases. Other MI-FE can be found in [60, 5]. In fact, [5] provided
a MI-FE scheme for a non-trivial functionality that is secure against unbounded
collusions and is based on standard cryptographic assumptions with polynomial
security loss.

• The Multi-Client FE is defined in [169], and it can be considered as a particular
case of MI-FE. In the multi-client functional encryption scheme, the encryption
algorithm, instead of taking the message m as input, takes mi , which is part of m
along with index i for each user and a time-based tag:(

ct1 =Enc(1,m1, l),ct2 =Enc(2,m2, l), . . . ,ctk =Enc(k,mk , l)
)
.

In fact, a single message m is broken into a vector (m1, . . .mk). Later the owner of
the token tok f , for function f can compute f (m1, . . . ,mk). The security notion in
MI-FE guarantees that a combination of ciphertexts generated for various labels
does not generate a valid global ciphertext, and the adversary gains no knowledge
as a result [3].

4.3 Sub Classes of Functional Encryption Scheme

Many encryption concepts and constructions can be viewed as special cases of Func-
tional Encryption. We will now briefly review some practical variations of the functional
encryption scheme for a particular functionality. It is worth noting that several of the
following encryption schemes had been developed prior to establishing the functional
encryption notion.

4.3.1 Identity-Based Encryption Scheme

The Identity-Based Encryption scheme can be regarded as the most well-studied func-
tional encryption scheme and it was introduced by Adi Shamir in 1984 [234]. In 2005, Sa-
hai and Waters [229] proposed a generalization of Shamir’s approach, namely the Fuzzy

4.3. Sub Classes of Functional Encryption Scheme 97

Identity-Based Encryption. In fact, proved in [58] IBE is the first known cryptosystem
that cannot be realized from public key encryption.

In the IBE scheme, the plaintext is described as a pair (id,m) of an identity (such
as email address) and the message (a.k.a., payload message), and the functionality is
similar to the identity map if the ciphertext and the token contains the same identity;
otherwise, it outputs ⊥. Figure 4.3 illustrates a generic schema for an IBE scheme.

FIGURE 4.3: Identity-Based Encryption scheme

• Message Space = (I ×M), •FIBE = {
f : (I ×M) →M∪ {⊥}

}
;

• Keyspace = I • f (i d , (id,m)) =
{

m If i d = id

⊥ If i d ̸= id

• (MPK,MSK) ← IBE.Setup(1ℓ)

• ct← IBE.Enc(MPK, (i d ,m)) • IBE.Dec(tokid,ct) =
{

m If i d = id

⊥ If i d ̸= id
• tokid ← IBE.TokGen(MSK,id)

Additional Note. Technically, IBE serves the same function as the public key. The dif-
ference in this paradigm is that instead of encrypting the data with each user’s public
key, the information holder can encrypt the data with the identity, resulting in a more
efficient cryptosystem. The owner of the token Tokid can later recover the message if
and only if the identity inside the token matches the identity inside the ciphertext.

Although numerous schemes have been proposed in the literature, the first practical
implementations were presented in 2001 by Boneh and Franklin [53], Water [257] and
Cocks [81]. In [257], Water proposed a completely secure Identity-Based Encryption
and Hierarchical Identity-Based Encryption (HIBE) system. Using an agile methodology
called “Dual System Encryption”, he demonstrated the scheme’s security under the well-
established decisional Bilinear Diffie-Hellman and linear decisional assumptions. We
distinguish anonymous-IBE among all others, which has a function hiding property;
namely, neither the token nor the ciphertext reveals the user’s identity [262, 153].

4.3.2 Predicate Encryption Scheme

The predicate encryption scheme [56, 173] resembles the IBE; however, it supports more
extensive functionality than IBE. Precisely, in PE, a plaintext contains the index and the
payload message, (ind,m), same as IBE, while the functionality is defined in terms of a
polynomial-time predicate P : (K∪ {ε})×I 7→ {0,1}.

Additional Note. Predicate encryption scheme has two flavors; public index and private
index. PE does not provide any security over the index. In fact, using the empty token,
tokε, the decryption algorithm returns both the plaintext index and the payload message
length.

4.3.3 Attribute-Based Encryption Scheme

Attribute-Based Encryption scheme (ABE for short) is introduced by Sahai and Water [229]
as a generalization of IBE and PE in which access to encrypted data is restricted to users

98 Chapter 4. Perfect Inner Product Encryption Schemes

FIGURE 4.4: Predicate Encryption scheme

• Index Space =I

• Message Space = (I ×M), • f (k, (ind,m)) =
{

m If P (k, ind) =True

⊥ If P (k, ind) =False

• Keyspace =K∪ {ε}

• (MPK,MSK) ←PE.Setup(1ℓ)

• ct←PE.Enc(MPK, (ind,m)) •PE.Dec(tokk ,ct) =
{

m If P (k, ind) =True

⊥ If P (k, ind) =False

• tokk ←PE.TokGen(MSK,k ∈K)

with specific attributes and policies. This concept was later refined by Goyal, Pandey,
Sahai, and Waters [134] into two distinct formulations: Key Policy and Ciphertext Policy.

An ABE is defined over the functionality F , which includes polynomial-size boolean
formulas, a.k.a., policy, in terms of an n variables boolean z⃗ = (z1, . . . , zn). When we
link the policy to the keyspace, we call it the Key-Policy Attribute-Based. The alterna-
tive approach is the Ciphertext-Policy Attribute-Based, which encrypts the policy in the
encryption algorithm and associates the attribute z⃗ with the key.

FIGURE 4.5: Attribute-Based Encryption scheme

• Message Space = ({0,1}n ×M), • Functionality: FAB = {
fφ : {0,1}n → {0,1}

}
;

• Policy Set = {
φn : {0,1}n → {0,1}

} • fφ(α,m) =
{

m If φ(α) =True

⊥ If φ(α) =False

• Attribute Set = {α ∈ {0,1}n}

• Key Policy : tokφn ,ct=Enc(α,m) PE.Dec(tokφ,ct[α,m]) =
{

m If φ(α) =True

⊥ If φn(α) =False

• Ciphertext Policy : tokα,ct=Enc(φn ,m) PE.Dec(tokα,ct[φn ,m]) =
{

m If φn(α) =True

⊥ If φ(α) =False

ABE has a number of features described in the literature, including threshold-policy
access control [190, 195], key-policy access control [134, 132, 186], ciphertext-policy ac-
cess control [47, 135, 189, 256, 263], non-monotonic access control [19], hierarchical
access control [255], and revocable access control [155]. In [199] the authors collect
a detailed survey on the Attribute-base encryption scheme; we refer to this survey for
more on the subject.

4.3.4 Hidden Vector Encryption Scheme

Hidden Vector Encryption (HVE for short) was proposed in [56] By Boneh and Water
as a subclass of Searchable Encryption systems. Prior to HVE, searchable encryption
schemes were restricted to simple equality tests, whereas HVEallows for conjunctive
and range searches.

4.4. Inner Product Encryption Scheme 99

FIGURE 4.6: Hidden Vector Encryption scheme

• Index Space = {0,1}∗

• Keyspace = {0,1,∗}n • f v⃗ ((w1, . . . wn),m) =
{

vi = wi ∨ vi =∗ : m

otherwise: ⊥
• Functionality: FHV = {

f v⃗ : ({0,1}∗)n → {0,1}
}

• ct←HV.Enc(MPK, (w⃗ ,m)) •HV.Dec(tokv⃗ ,ct) =
{

m If φ(k, ind) =True

⊥ If φ(ind) =False

• tokv⃗ ←PE.TokGen(MSK, v⃗)

4.4 Inner Product Encryption Scheme

Inner product encryption IPE is a notable special case of functional encryption [56,
173, 189, 217, 212, 7, 231, 194] which has been subjected to extensive studies in the
last decade. In comparison to previous schemes, which were restricted to conjunctive
searches. For example Katz, Sahai, and Waters [173] proposed a system based on the
Inner product (dot product) of two vectors over Zn for some composite number n that
allows for more complex evaluations of disjunctions, polynomials, and CNF/DNF for-
mulae. Subsequently IPE was extended by Okamoto and Takashima [212] and Lewko et
al. in [189] over the field Fp . Moreover a post-quantum secure IPE scheme is proposed
in [91].

Simply put, in the IPE scheme, the message associated with a pair (m, x⃗), with m
being the payload message and vector x⃗ ∈ Zn

p the attribute, and the token is associated
with a vector v⃗ ∈Zn

p .
The functionality is F (v⃗ , (m, x⃗)) = f v⃗ (⃗x,m) which returns m if 〈⃗x, v⃗〉 = 0 mod Zp (i.e.

the two vectors are orthogonal) or ⊥ otherwise, Figure 4.7.
In fact, IPE is a generalization of Identity-Based Encryption [234, 53, 81] and Anony-

mous Identity-Based Encryption [59, 6, 1].

FIGURE 4.7: Inner Product Encryption scheme

• Vector Space: Σn = {
v⃗ = (v1, . . . , vn) : vi ∈ F

} •FIP = { f :Σn ×M→M∪ {⊥}};

• Message Space: (Σn ×M), • f (v⃗ , (⃗x,m)) =
{

m; If 〈v⃗ , x⃗〉 = 0

⊥; If 〈v⃗ , x⃗〉 ̸= 0

• Key Space: Σn

• (MPK,MSK) ← IP.Setup(1ℓ,n)

• ct← IP.Enc(MPK, (⃗x,m)) • IP.Dec(Tokv⃗ ,ct) =
{

m; If 〈v⃗ , x⃗〉 = 0

⊥; If 〈v⃗ , x⃗〉 ̸= 0

•Tokv⃗ ← IP.TokGen(MSK, v⃗)

100 Chapter 4. Perfect Inner Product Encryption Schemes

There are numerous applications for IPE, such as privacy-preserving statistical anal-
ysis, where statistical analysis includes sensitive information and conjunctive/disjunc-
tive normal-form formulas. More concretely, we can mention anonymous Identity-
Based encryption, Hidden-Vector encryption, predicate encryption schemes, compu-
tation of weighted averages and sums for statistical analysis (including sensitive infor-
mation) on encrypted data, and support for polynomial evaluation over encrypted data
as early applications [173], furthermore, recent applications include the development
of bounded collusion FE for all circuits [11], the development of trace and revoke sys-
tems [13], and the construction of non-zero inner product encryption schemes [171].

4.4.1 IPE; Variants

There are three types of functional encryption schemes referred to as Inner Product en-
cryption schemes; however, they differ in technical features. In all three, the keyspace
and the message space are associated with vector v⃗ and vector x⃗, respectively:

1. Predicate only IPE: In this configuration, the message space contains only the vec-
tor x⃗ and no payload message m. The decryption algorithm outputs a boolean
value depending on the inner product of v⃗ and x⃗:

Fpredicate−only−IP = {
f v⃗ :Σn → {0,1} : v⃗ ∈Σn

}
,

where

f v⃗ (⃗x) =
{
True If 〈⃗x, v⃗〉 = 0

False If 〈⃗x, v⃗〉 ̸= 0

2. Predicate IPE: The message space includes vector x⃗ and a payload message m ∈
M. As a result, the decryption algorithm returns m if two vectors v⃗ and x⃗ are
orthogonal, or an error symbol if their inner product is not zero.

Fpredicate−IP = {
f v⃗ :Σn ×M→M∪ {⊥} : v⃗ ∈Σn

}
where

f v⃗ (m, x⃗) =
{

m If 〈⃗x, v⃗〉 = 0

⊥ If 〈⃗x, v⃗〉 ̸= 0

3. IPE: Unlike the first two schemes, IPE does not play a role as a predicate, and the
functionality is the inner product of two vectors x⃗ and v⃗ . It means that the output
of the decryption algorithm would be 〈⃗x, v⃗〉.

FIP = {
f v⃗ :Σn →Z : v⃗ ∈Σn

}
,

where

f v⃗ (⃗x) = 〈⃗x, v⃗〉

Multi-Input IPE. A more general notion of the IPE is the multi-input IPE [2, 3, 4]
which, instead of a single vector, they consider m vectors and define the function-
ality as follows:

FIP = {
f v⃗1,....v⃗m :Σm

n →Z : v⃗i ∈Σn
}
,

4.5. Technical Overview 101

where

f(v⃗1,...,v⃗m)(⃗x1, . . . , x⃗m) =
m∑

i=0
〈⃗xi , v⃗i 〉

Additional Note. In our research, we study the Predicate IPE. The result is also appli-
cable for the predicate-only-IPE; however, we abuse the notation and refer to Predicate
IPE as IPE.

4.5 Technical Overview

Before describing our IPE scheme, we provide a detailed justification for the the mod-
ifications required to attain perfect correctness property in IPE. But first, we state that
the ultimate purpose of our research was to develop a verifiable Inner product encryp-
tion scheme. To this end, we were looking for an IPE scheme that was compatible with
Badrinarayanan’s transformation from the start.

To instantiate the transformation of Badrinarayanan et al. we need to build an IPE
scheme with perfect correctness. Our starting point to construct a perfectly correct IPE
scheme is the IPE scheme of Park [217] which only enjoys statistical correctness.

The reason for choosing this IPE is that it is conceptually simple, and its security
is based on standard assumptions over bilinear groups. However, to make the Park’s
scheme compatible with the Badrinarayanan et al.’s transformation, we need to solve
several technical challenges, in particular:

i. The master public key needs to be verifiable.

ii. The scheme has to satisfy perfect correctness.

This requires substantial modification of all main algorithms: setup, token generation,
encryption, and decryption.

4.5.1 Verification Algorithms

A VIPE scheme requires public verification algorithms that can verify the outputs of the
setup, encryption, and token generation algorithms, in particular check whether these
algorithms were run honestly. In more detail, if any string (master public key, cipher-
text or token) passes the corresponding verification algorithm, it means it was a proper
output of the corresponding algorithm (setup, encryption, or token generation). Each
party who runs the setup, encryption or token generation algorithm needs to provide
a proof that it executed the algorithm honestly without revealing harmful information
about the secret parameters or the randomness used in the algorithm.

Usually, non-interactive Zero-Knowledge (NIZK) proofs are used in this context. Un-
fortunately, NIZK proofs cannot be used for verifiable FE as they rely on a trusted CRS
(Common Reference String) or random oracles, and we aim at perfect verifiability which
has to hold despite any collusion and computing power. The transform of Badrinarayanan
et al. solves the issue cleverly employing NIWI-proofs.

Following the transform of [23], our VIPE consists of four instances of an IPE scheme.
In the VIPE’s encryption algorithm, we first run the IPE’s encryption algorithm four
times to generate four ciphertexts and then we prove that all these four ciphertexts are
the encryption of the same message or that some other trapdoor predicate is satisfied
(the latter is needed for message indistinguishability and will be detailed later).

102 Chapter 4. Perfect Inner Product Encryption Schemes

For the sake of argument, let us assume the VIPE scheme consists only of two (in-
stead of four) parallel perfectly correct IPE scheme instantiations IP and ˆIP.

The master public key of the Park’s scheme [217] contains a component Λ= e(g , g ′)
in which g is public, but g ′ needs to be kept secret. An honestly computed ciphertext
CT in IP includes ct1 := g−s and ct7 := Λ−s ·m, among its components (we ignore the
other components). We first prove that CT (resp. ĈT in ˆIP) is well-formed. Then we
need to prove that the two ciphertexts are both encryptions of the same message M
(i.e., m = m̂ = M). We reduce the problem to proving that the following property holds:

ct7

ĉt7
= e(g , g ′)−s ·m

e(ĝ , ĝ ′)−ŝ ·m̂
= e(ĉt1, ĝ ′)

e(ct1, g ′)
= e(ĝ ŝ , ĝ ′)

e(g s , g ′)
.

However, since g ′ and ĝ ′ are not public, the party who runs the encryption algorithm
would be unable to prove this property.

We solve this issue in the following way. We add to the master public key of IP two
elements g1, g2 (and ĝ1, ĝ2 for ˆIP), satisfying

Λ= e(g , g ′) = e(g1, g2),

Λ̂= e(ĝ , ĝ ′) = e(ĝ1, ĝ2).

Then, we add the following equations for the new secret variables X3 := g s
1,X̂3 := ĝ ŝ

1:

ct−1
7 · ĉt7 = e(X3, g2) ·e(X̂3, ĝ2)−1,

e(g ,X3) = e(ct1, g1),

e(ĝ ,X̂3) = e(ĉt1, ĝ1).

It is easy to see that these equations are satisfied if and only if m = m̂, which the encryp-
tor can prover.

Having modified Park’s scheme, we thus have to prove that the modified scheme is
IND-secure. This is done in Section 4.7, in which we reduce the IND-Security of the
scheme to the Decision Linear assumption.

4.5.2 Achieving Perfect Correctness

The underlying IPE scheme must have perfect correctness for Badrinarayanan et al.’s
transform to work. Unfortunately, to our knowledge, all IPE schemes2 known in the
literature have a negligible probability of error which makes cheating possible and so
not directly usable to construct verifiable functional encryption and functional com-
mitments for the IPE functionality.

Suppose the IPE scheme had a negligible probability of decryption error rather than
perfect correctness. In that case, dishonest parties might collude with each other so that
the verification algorithms would accept invalid results. Contrast this with the func-
tional commitments. In the functional commitment, the committer is the same party
who generates the ciphertext (the commitment) and the token (the decommitment) and
thus might profit from a negligible space of decryption error to prove false assertions on
its committed value.

2Recall that we refer to the IPE functionality of Katz, Sahai and Waters [173].

4.5. Technical Overview 103

In more detail, in most pairing-based IPE schemes the encryption and decryption
algorithms work as follows:

Enc(MPK,−→x ,m) →CT,

Dec(Tok−→v ,CT) → m∗ = m · (random)〈⃗x,v⃗〉.

in which random is some random value that depends on the randomness used by the
token generator and encryption algorithms. Thus, even in the case of honest parties,
there is a negligible probability that random= 1 and so, even if 〈⃗x, v⃗〉 ̸= 0, the decryption
algorithm may output a valid message m instead of ⊥.

In the case of dishonest parties, two parties (the encryptor and the token generator)
may collude with each other to create randomness such that random equals 1.

In this case, the parties would prove that they followed the protocol correctly, and
invalid results would pass the verification algorithms. A similar problem also appears in
the context of MPC in the head [161], where the soundness of the ZK protocol built from
MPC, strongly relies on the perfect correctness of the underlying MPC. To cope with sta-
tistical correctness in MPC in the head, a coin tossing protocol can be employed, while
in a completely non-interactive scenario like ours this is more challenging. Hence, to
obtain a VIPE scheme it is crucial to construct an IPE scheme satisfying perfect correct-
ness.

Recall that the decryption algorithm in the IPE scheme of Park [217] works as follows:

Dec
(
Tok−→v ,CT=Enc(−→x ,m)

) 7→ m∗ = m ·e(g ,h)(λ1s3+λ2s4)〈⃗x,v⃗〉

in which λ1,λ2 are random values used in the token generation algorithm and s3, s4 are
random values used in the encryption algorithm. To decide whether to accept the de-
cryption’s output or not, the first attempt would be the following. Generate two cipher-
texts ct,ct′ with two independent random values {si }, {s′i }, decrypt both ct and ct′ to get
m∗

1 and m∗
2 and if m∗

1 = m∗
2 accept the result, or output ⊥ otherwise. In more detail:

m∗
1 = m ·e(h, g)(λ1s3+s4λ2)〈⃗x,v⃗〉,

m∗
2 = m ·e(h, g)(λ1s′3+s′4λ2)〈⃗x,v⃗〉 (4.1)

However, in case 〈⃗x, v⃗〉 ̸= 0 there is non-zero probability for which:

λ1s3 + s4λ2 =λ1s′3 +λ2s′4 ̸= 0 ⇒ m∗
1 = m∗

2 ̸= m

As seen in Figure 4.8 (the left diagram), if we interpret the L : λ1s3 + s4λ2 as a line, each
pair of green dots on this line would result in M = m∗

2 .
To avoid this issue, we choose the random values in such a way that the above equal-

ity can never occur. To do so, in the encryption algorithm we choose non-zero random
values s1, . . . , s4 and s1

′, . . . , s4
′ such that s3 ̸= s3

′, and s4 = s4
′. In this case, we have:

λ1s3 + s4λ2 =λ1s′3 +λ2s4 ⇒
λ1(s3 − s′3) = 0 ⇒ (λ1 = 0)∨ (s3 = s′3)

(4.2)

The right diagram in Figure 4.8 shows that in fact the intersection of line L with line
x = s3 has a unique point which is the only point the M = m∗

2 would occur.

104 Chapter 4. Perfect Inner Product Encryption Schemes

FIGURE 4.8: The left diagram shows the points that result to incorrect output in
decryption algorithm and the right diagram shows the single point that result to

correct output in decryption algorithm.

Based on the way λ1, s3, s′3 have been chosen, neither (λ1 = 0) nor (s3 = s′3) may happen;
hence the decryption algorithm outputs m if and only if 〈⃗x, v⃗〉 = 0. The resulting IPE
scheme satisfies perfect correctness as wished, and we prove that it is still selectively
indistinguishability-secure under the DLin Assumption.

When constructing a VIPE scheme from such an IPE scheme, these additional con-
straints in the encryption and token generation procedures will correspond to more
constraints in the proofs of correct encryption and token generation.

Furthermore, an additional challenge we will have to address is that some of the
proofs in the Badrinarayananet al. transform are for relations that consist of a general-
ized form of disjunction. Thus standard techniques to implement disjunctions for GS
proofs cannot be directly applied, see Section 3.12.

4.5.3 IPE; Formal Definition

For security parameter ℓ ∈ N and the filed F, we present a set of vectors of length n
defined over F by

Σn = {
v⃗ = (v1, . . . , vn) : vi ∈ F

}
.

Considering a message space M, we define the functionality FIP as follows:

FPE = {
f v⃗ :Σn ×M→M∪ {⊥} : v⃗ ∈Σn

}
,

where

f v⃗ (⃗x,m) =
{

m If 〈⃗x, v⃗〉 = 0

⊥ If 〈⃗x, v⃗〉 ̸= 0
.

Both M and the field size can depend on the security parameter (not necessarily
polynomial of it) but for simplicity, we will skip this detail. IPE can be seen as a func-
tional encryption scheme for the functionality of FIP. More concretely, an IPE scheme
is defined as follows.

Definition 33 (Inner Product Encryption Scheme). An IPE scheme for a message space
M and a family of vectors Σ = {Σn}n∈N over F is a tuple of four polynomial-time algo-
rithms:

ΠIP = 〈IP.SetUp, IP.TokGen, IP.Enc, IP.Dec〉
with the following syntax and satisfying the correctness property below.

4.5. Technical Overview 105

• Set Up is a probabilistic algorithm that takes the security parameter, ℓ, and integer
n ∈ N as inputs and returns a pair of keys (MPK,MSK). We refer to the first com-
ponent, MPK, as a master public key, which defines a message space M, and the
second one, MSK, as the master secret key. It requires that both keys have a length
polynomial in terms of the security parameter:

(MPK,MSK) ← IP.SetUp(1λ,n)

We implicitly consider the public key as the input to all algorithms even if it is not
stated explicitly.

• Token Generation is a probabilistic algorithm that on input master secret key and
vector v⃗ ∈Σn generates the token for f v⃗ :

Tokv⃗ ← IP.TokGen(MSK, v⃗)

Notice that here f v⃗ and v⃗ are considered identical to avoid heavy notation.

• Encryption is a probabilistic algorithm that takes as inputs the master public key,
a message m ∈M and vector x⃗ ∈Σn to generate a ciphertext:

ct← IP.Enc(MPK, x⃗,m)

• Decryption is a deterministic algorithm that on inputs token and a ciphertext out-
puts m′ ∈M∪ {⊥}.

IP.Dec(MPK,Tokv⃗ ,ct) 7→ m′ ∈M∪ {⊥}.

• Perfect correctness: ΠIP is perfectly correct if for all λ,n ∈ N, all x⃗, v⃗ ∈ Σn and all
m ∈M the following holds:

Pr

 IP.Dec(MPK,Tokv⃗ ,ct) = f v⃗ (⃗x,m) |
(MPK,MSK) ← IP.SetUp(1ℓ,n),
Tokv⃗ ← IP.TokGen(MPK,MSK, v⃗),
ct← IP.Enc(MPK, x⃗,m)

= 1

Additional Note. Contrary to the other two types, correctness in a predicate-IPE prod-
uct encryption scheme is not easily achievable.

In predicate only IPE, there is no payload message m, so the output of the decryption
algorithm would be equal to

1 = random〈⃗x,v⃗〉 = random0

if two vectors are orthogonal and would be some random number if they are not. Fur-
ther, in the case of IPE, the correctness property guarantee that the output of the decryp-
tion algorithm is indeed the inner product of the two vectors. In IPE (the third one) 4.4.1,
the correctness property ensures that the output of the decryption algorithm, indeed is
equal to the inner product of the two vectors. The other two, is not actually the same. In
the big picture, in most IPE schemes, the encryption and decryption algorithms work as
follows:

Enc(MPK,−→x ,m) → ct, Dec(Tok−→v ,ct) → m∗ = m ⊙ (random)〈⃗x,v⃗〉,

106 Chapter 4. Perfect Inner Product Encryption Schemes

in which random is some random value in from the underlying group 〈G,⊙〉 that depends
on the randomness used by the token generator and encryption algorithms.

Thus, even in case of honest parties, there is a negligible probability that r = 1 and
so, even if 〈⃗x, v⃗〉 ̸= 0, the decryption algorithm may output a valid message m instead of
⊥.

4.5.4 Security Notion for IPE

Extensive research has been done into developing the Inner Product Encryption scheme,
which has resulted in a variety of IPE in terms of security. For example, Abdalla et al. [7],
present an IPE with standard assumptions that has selectively security and later Agrawal
et al. [12, 11] present an IPE scheme that achieves adaptive SIM-based security. More-
over, in [73] Castagnos et al.presents an adaptive IND-secure IPE schemes, which allow
for the evaluation of unbounded inner products modulo a prime p. Finally, the first
IND-CCA IPE schemes based on the DDH, DCR, and any of the MDDH assumptions is
presented by Benhamouda et al in [41].

To model the security of the IPE, we adopt the indistinguishability-based (IND) no-
tion of security [56], in particular selective security [57]. However, Boneh, Sahai, and
Waters [55] showed deficiencies of this notion in general and impossibility results for the
more general notion of simulation-based security; see also [71, 55, 159, 90] for general
techniques to overcome the known impossibility results in different settings. Nonethe-
less, no practical attacks are known for natural schemes to our knowledge. Selective
security is sufficient for CCA-security [57] and our application of verifiable polynomial
commitments of Section 5.2.

The selectively indistinguishability-based notion of security for an IPE scheme over

the vector space Σ and message space M are formalized using the game Expind−ipA (1ℓ,n)

in Fig. 4.9, between an adversary A and a challenger C ipe (defined in the game) param-
eterized by security parameter ℓ and dimension n. The advantage of A in this game
is:

AdvIPA (λ,n) =
∣∣∣Pr

[
Expind−ipA (1ℓ,n) = 1

]
− 1

2

∣∣∣.
Definition 34. The inner product encryption scheme is selectively indistinguishable se-
cure (IND-secure) if for all n > 0, the advantage AdvIPA (λ,n) for all PPTadversaries A is a
negligible function in terms of ℓ.

4.6 Perfectly Correct IPE

This section presents our perfectly correct IPE, the key ingredient for building verifiable
inner-product encryption (see chapter 5).

Let (p,G,GT ,e) ←GroupGen(1ℓ) be a bilinear group generator, and n ∈N be the vec-
tor length. We construct a perfectly correct IPE scheme

IP= 〈IP.SetUp, IP.Enc, IP.TokGen, IP.Dec〉

for the set Zn
p of vectors of length n over Zp and for message space M=GT .

IPE Construction

4.6. Perfectly Correct IPE 107

• Selective Challenge Phase. A(1ℓ,n) −→ x⃗0, x⃗1 ∈ Σn . Then A sends these two vectors
to the challenger.

• Setup Phase. The challenger C ip generates the pair (MSK,MPK) by invoking the setup
algorithm on input (1ℓ,n). Then C ip sends MPK to A.

• Query Phase 1. A asks for the token for a vector v⃗i ∈Σn .

• Challenge Phase. A sends the challenger two messages m0,m1 ∈ M of the same
length.

• Challenge Phase. C ip flips a coin to generate random bit β and send

ct=Enc(MPK, x⃗β,mβ)

to the adversary.

• Query Phase 2. Query Phase 2: same as Query Phase 1.

• Output Phase. A outputs a bit β′.

• Winning Condition. A wins the game if β′ =β and if

m0 ̸= m1 , 〈⃗x0, v⃗i 〉, 〈⃗x1, v⃗i 〉 ̸= 0,

for all the vectors v⃗i queried in both query phase 1 and 2, or

m0 = m1 : 〈v⃗i , x⃗0〉 = 0 ⇐⇒ 〈v⃗i , x⃗1〉 = 0.

If the winning condition is satisfied, the game’s output is 1 or 0 otherwise.

FIGURE 4.9: IND-CPA Security Game: Expip,n
A (1ℓ)

• Set Up Algorithm: IP.SetUp(1ℓ,n) −→ (MSK,MPK)

For security parameter ℓ, i ∈ [n] and b ∈ [2], compute what follows:

1. Run GroupGen(1ℓ) (cf. Section 2.6) to generate a tuple pp = 〈p,G,GT ,e〉 as
public parameter.

2. Pick g , g ′ $←−G .

3. Pick δ1,θ1,δ2,θ2, w1,i , t1,i , fb,i ,hb,i ,k
$←−Z∗

p .

4. Pick Ω
$←−Zp and compute {w2,i , t2,i }i∈[n] such that:

Ω= δ1w2,i −δ2w1,i = θ1t2,i −θ2t1,i .

5. For i ∈ [n],b ∈ [2] set:

Wb,i = g wb,i , Fb,i = g fb,i , K1 = g k , Ub = gδb , h = gΩ ,

Tb,i = g tb,i , Hb,i = g hb,i , K2 = g ′ 1
k , Vb = g θb , Λ= e(g , g ′).

108 Chapter 4. Perfect Inner Product Encryption Schemes

6. Set:

MPK=(
g ,h, {Wb,i ,Fb,i ,Tb,i , Hb,i ,Ub ,Vb}b∈[2],i∈[n],K1,K2,Λ

)
∈G8n+8 ×GT ,

MSK=(
{wb,i , fb,i , tb,i ,hb,i ,δb ,θb}b∈[2],i∈[n], g ′)
∈Z8n+4

p ×G.

7. Return (MPK,MSK).

• Encryption Algorithm: IP.Enc(MPK, x⃗,m) −→CT

1. For x⃗ = (x1, . . . , xn) ∈Zn
p and a message m ∈GT , pick random elements:

s1, . . . s4, s′1, . . . , s′3
$←−Z∗

p : s3 ̸= s′3

and compute what follows:

ct1 = g s2 , ct2 = hs1 ,
ct3,i =W s1

1,i ·F s2
1,i ·U

xi s3
1 , ct4,i =W s1

2,i ·F s2
2,i ·U

xi s3
2

ct5,i = T s1
1,i ·H s2

1,i ·V
xi s4

1 , ct6,i = T s1
2,i ·H s2

2,i ·V
xi s4

2


i∈[n]

,

ct7 = e(g s3 , g s4), ct8 =Λ−s2 ·m.

ct′1 = g s′2 , ct′2 = hs′1 ,
ct′3,i =W

s′1
1,i ·F

s′2
1,i ·U

xi s′3
1 , ct′4,i =W

s′1
2,i ·F

s′2
2,i ·U

xi s′3
2

ct′5,i = T
s′1
1,i ·H

s′2
1,i ·V

xi s4
1 , ct′6,i = T

s′1
2,i ·H

s′2
2,i ·V

xi s4
2


i∈[n]

,

ct′7 = e(g s′3 , g s4), ct′8 =Λ−s′2 ·m.

2. Set:

ct= (ct1,ct2,

{
ct3,i , ct4,i

ct5,i , ct6,i

}
,ct7,ct8) ,

ct′ = (ct′1,ct′2,

{
ct′3,i , ct′4,i
ct′5,i , ct′6,i

}
,ct′7,ct′8).

3. Output CT= (ct,ct′).

• Token generation Algorithm: IP.TokGen(MSK, v⃗) −→Tokv⃗ :

1. Pick ℓ1,ℓ2
$←−Z∗

p .

2. For i ∈ [n] pick {ri }, {Φi }
$←−Z∗

p .

4.6. Perfectly Correct IPE 109

3. Set Tokv⃗ = (K A,KB ,

{
K3,i , K4,i

K5,i , K6,i

}
i∈[n]

) as follows and return Tokv⃗ .

K A = g ′.
n∏

i=1
K

− f1,i

3,i ·K
− f2,i

4,i ·K
−h1,i

5,i ·K
−h2,i

6,i ,

KB =
n∏

i=1
g−(ri+Φi),

K3,i = g−δ2ri · gλ1vi w2,i ,

K4,i = gδ1ri · g−λ1vi w1,i ,

K5,i = g−θ2Φi · gλ2vi t2,i ,

K6,i = g θ1Φi · g−λ2vi t1,i .

• Decryption Algorithm: IP.Dec(CT,Tokv⃗), Let CT= (ct,ct′) such that:

ct= (ct1,ct2, {ct3,i ,ct4,i ,ct5,i ,ct6,i },ct7,ct8),

ct′ = (ct′1,ct′2, {ct′3,i ,ct′4,i ,ct′5,i ,ct′6,i },ct7,ct8).

1. If ct7 = ct′7 output ⊥ and stop, otherwise go to the next step.

2. Compute:

Υ=ct8 ·e(ct1,K A) ·e(ct2,KB)·
n∏

i=1
e(ct3,i ,K3,i) ·e(ct4,i ,K4,i) ·e(ct5,i ,K5,i) ·e(ct6,i ,K6,i).

Υ′ =ct′8 ·e(ct′1,K A) ·e(ct′2,KB)·
n∏

i=1
e(ct′3,i ,K3,i) ·e(ct′4,i ,K4,i) ·e(ct′5,i ,K5,i) ·e(ct′6,i ,K6,i).

3. If Υ=Υ′ output Υ otherwise output ⊥.

4.6.1 Perfect Correctness Property

We now show the inner product scheme, is perfectly correct. It means that an honestly
generated ciphertext decrypts correctly with probability 1.

Theorem 1. The inner product scheme ΠIP, defined in 4.6 is perfectly correct.

Proof. Since F−s2
1,i ·ct3,i =W s1

1,i ·U
s3xi
1 , we get

e(F−s2
1,i ·ct3,i ,K3,i) = e(g , g)s1λ1vi w1,i w2,i−s3xiδ1δ2 ·e(g , g)−s1riδ2w1,i+s3λ1viδ1w2,i

e(F−s2
2,i ·ct4,i ,K4,i) = e(g , g)−s1λ1vi w1,i w2,i+s3xiδ1δ2 ·e(g , g)s1riδ1w2,i−s3λ1viδ2w1,i

We then obtain:

e(F−s2
1,i ·ct3,i ,K3,i) ·e(F−s2

2,i ·ct4,i ,K4,i) =
(
e(g s1 , g ri) ·e(g xi s3 , gλ1vi)

)δ1w2,i−δ2w1,i

= e(hs1 , g ri) ·e(hs3λ1 , g xi vi)

= e(ct2, g ri) ·e(hλ1s3 , g xi vi)

110 Chapter 4. Perfect Inner Product Encryption Schemes

The same computation gives us

e(H−s2
1,i ·ct5,i ,K5,i) ·e(H−s2

2,i ·ct6,i ,K6,i) = e(ct2, gΦi) ·e(hλ2s4 , g xi vi)

As a conclusion we have the following:

e(ct1,K A) ·
n∏

i=1
e(ct3,i ,K3,i) ·e(ct4,i ,K4,i) ·e(ct5,i ,K5,i) ·e(ct6,i ,K6,i) =

=λs2 ·
n∏

i=1
e(F−s2

1,i ,K3,i)e(F−s2
1,i ,K4,i) ·e(H−s2

1,i ,K5,i) ·e(H−s2
1,i ,K6,i) =

=λs2 ·e(ct2,K −1
B) ·e(h, g)(λ1s3+λ2s4)〈⃗x,v⃗〉

Plugging this into the decryption algorithm we obtain:

Υ= m ·e(h, g)(λ1s3+λ2s4)〈⃗x,v⃗〉,

Υ′ = m ·e(h, g)(λ1s′3+s4λ2)〈⃗x,v⃗〉

First note that it cannot happen that ct7 ̸= ct′7 for honestly generated ciphertexts. Clearly:

〈⃗x, v⃗〉 = 0 ⇒ (Υ=Υ′ = m).

All we need to check is thus that if 〈⃗x, v⃗〉 ̸= 0, we get output ⊥. We could only get a wrong
output if Υ=Υ′, but this is impossible since it implies (using λ1 ̸= 0, s3 ̸= s′3):

e(h, g)(λ1s3−λ1s′3)〈⃗x,v⃗〉 = 1GT ⇒λ1(s3 − s′3)〈⃗x, v⃗〉 ≡p 0

⇒ 〈⃗x, v⃗〉 ≡p 0 .
(4.3)

4.7 Security Proof

This section proves our IPE scheme is IND-secure under the standard computational
assumptions, DLin 6 and DBDH 7.

Theorem 4.7.1. The IPE scheme IP of Construction 4.6 is IND-secure if the DBDH and
DLin assumptions hold relative to GroupGen.

To prove the theorem, we define a series of hybrid experiments H0, . . . ,H12 in which
H0 corresponds to the real experiment with challenge bit b = 0 and H12 corresponds to
the real experiment with challenge bit b = 1. We show that they are computationally
indistinguishable.

Hybrid H0: this hybrid is identical to the real game with challenge bit b = 0. Precisely,
the ciphertext is computed for message m0 and vector −→x as follows:

ct=(g s2 ,hs1 , {W s1
b,i ·F s2

b,i ·U
xi s3
b ,T s1

b,i ·H s2
b,i ·V

xi s4
b }b∈[2],i∈[n],e(g s3 , g s4),

Λ−s2 ·m0)

ct′ =(g s′2 ,hs′1 , {W
s′1

b,i ·F
s′2
b,i ·U

xi s′3
b ,T

s′1
b,i ·H

s′2
b,i ·V

xi s4
b }b∈[2],i∈[n],e(g s′3 , g s4),

Λ−s′2 ·m0)

4.7. Security Proof 111

Hybrid H1: this hybrid is identical to the previous hybrid, except that instead of

e(g , g)s3s4 ,e(g , g)s′3s4

the ciphertext contains two random elements R1,R ′
1

$←− GT . Precisely, the cipher-
text is computed as follows:

ct=(g s2 ,hs1 {W s1
b,i ·F s2

b,i ·U
xi s3
b ,T s1

b,i ·H s2
b,i ·V

xi s4
b }b∈[2],i∈[n], R1 ,

Λ−s2 ·m0),

ct′ =(g s′2 ,hs′1 , {W
s′1

b,i ·F
s′2
b,i ·U

xi s′3
b ,T

s′1
b,i ·H

s′2
b,i ·V

xi s4
b }b∈[2],i∈[n], R ′

1 ,

Λ−s′2 ·m0)

Hybrid H2: this hybrid is identical to the previous hybrid, except that instead of

Λ−s2 ·m0,Λ−s′2 ·m0

the ciphertext contains two random elements R,R ′ $←−GT . Precisely, the ciphertext
is computed as follows:

ct= (g s2 ,hs1 , {W s1
b,i ·F s2

b,i ·U
xi s3
b ,T s1

b,i ·H s2
b,i ·V

xi s4
b }b∈[2],i∈[n],R1, R),

ct′ = (g s′2 ,hs′1 , {W
s′1

b,i ·F
s′2
b,i ·U

xi s′3
b ,T

s′1
b,i ·H

s′2
b,i ·V

xi s4
b }b∈[2],i∈[n], ,R ′

1, R ′)

Hybrid H3: this hybrid is identical to the previous hybrid, except that instead of

T s1
b,i ·H s2

b,i ·V
xi s4

b ,T
s′1
b,i ·H

s′2
b,i ·V

xi s4
b

the ciphertext contains

T s1
b,i ·H s2

b,i ,T
s′1
b,i ·H

s′2
b,i .

Precisely, the ciphertext is computed as follows:

ct= (g s2 ,hs1 , {W s1
b,i ·F s2

b,i ·U
xi s3
b , T s1

b,i ·H s2
b,i }b∈[2],i∈[n],R1,R),

ct′ = (g s′2 ,hs′1 , {W
s′1

b,i ·F
s′2
b,i ·U

xi s′3
b , T

s′1
b,i ·H

s′2
b,i }b∈[2],i∈[n],R ′

1,R ′)

Hybrid H4: this hybrid is identical to the previous hybrid, except that instead of

T s1
b,i ·H s2

b,i ,T
s′1
b,i ·H

s′2
b,i

the ciphertext contains

T s1
b,i ·H s2

b,i ·V
yi s4

b ,T
s′1
b,i ·H

s′2
b,i ·V

yi s4

b .

Precisely, the ciphertext is computed as follows:

ct= (g s2 ,hs1 , {,W s1
b,i ·F s2

b,i ·U
xi s3
b , T s1

b,i ·H s2
b,i ·V

yi s4

b }b∈[2],i∈[n],R1,R),

112 Chapter 4. Perfect Inner Product Encryption Schemes

ct′ = (g s′2 ,hs′1 , {W
s′1

b,i ·F
s′2
b,i ·U

xi s′3
b , T

s′1
b,i ·H

s′2
b,i ·V

yi s4

b }b∈[2],i∈[n],R ′
1,R ′)

Hybrid H5: CT6 = (ct,ct′), This hybrid is identical to the previous hybrid, except that
the power of Vb in ct is s4 and its power in ct′ is s′4. Precisely, the ciphertext is
computed as follows:

ct= (g s2 ,hs1 , {,W s1
b,i ·F s2

b,i ·U
xi s3
b ,T s1

b,i ·H s2
b,i ·V

yi s4

b }b∈[2],i∈[n],R1,R),

ct′ = (g s′2 ,hs′1 , {W
s′1

b,i ·F
s′2
b,i ·U

xi s′3
b , T

s′1
b,i ·H

s′2
b,i ·V

yi s′4
b }b∈[2],i∈[n],R ′

1,R ′)

Hybrid H6: this hybrid is identical to the previous hybrid, except that s3 = s′3. Precisely

ct= (g s2 ,hs1 , {W s1
b,i ·F s2

b,i ·U
xi s3
b ,T s1

b,i ·H s2
b,i ·V

yi s4

b }b∈[2],i∈[n],R1,R),

ct′ = (g s′2 ,hs′1 , { W
s′1

b,i ·F
s′2
b,i ·U

xi s3
b ,T

s′1
b,i ·H

s′2
b,i ·V

yi s′4
b }b∈[2],i∈[n],R ′

1,R ′)

Hybrid H7: This hybrid is identical to the previous hybrid, except we replace s3 with 0.

ct= (g s2 ,hs1 , { W s1
b,i ·F s2

b,i ,T s1
b,i ·H s2

b,i ·V
yi s4

b }b∈[2],i∈[n],R1,R),

ct′ = (g s′2 ,hs′1 , { W
s′1

b,i ·F
s′2
b,i ,T

s′1
b,i ·H

s′2
b,i ·V

yi s′4
b }b∈[2],i∈[n],R ′

1,R ′)

Hybrid H8: This hybrid is identical to the previous hybrid, except that instead of

W s1
b,i ·F s2

b,i ,W
s′1

b,i ·F
s′2
b,i

we set
W s1

b,i ·F s2
b,i ·U

yi s3

b ,W
s′1

b,i ·F
s′2
b,i ·U

yi s3

b .

Precisely

ct= (g s2 ,hs1 , { W s1
b,i ·F s2

b,i ·U
yi s3

b ,T s1
b,i ·H s2

b,i ·V
yi s4

b }b∈[2],i∈[n],R1,R),

ct′ = (g s′2 ,hs′1 , { W
s′1

b,i ·F
s′2
b,i ·U

yi s3

b ,T
s′1
b,i ·H

s′2
b,i ·V

yi s′4
b }b∈[2],i∈[n],R ′

1,R ′)

Hybrid H9: this hybrid is identical to the previous hybrid, except that instead of

W s1
b,i ·F s2

b,i ,W
s′1

b,i ·F
s′2
b,i

we set
W s1

b,i ·F s2
b,i ·U

yi s3

b ,W
s′1

b,i ·F
s′2
b,i ·U

yi s′3
b .

Precisely

ct= (g s2 ,hs1 , {W s1
b,i ·F s2

b,i ·U
yi s3

b ,T s1
b,i ·H s2

b,i ·V
yi s4

b }b∈[2],i∈[n],R1,R),

ct′ = (g s′2 ,hs′1 , { W
s′1

b,i ·F
s′2
b,i ·U

yi s′3
b ,T

s′1
b,i ·H

s′2
b,i ·V

yi s′4
b }b∈[2],i∈[n],R ′

1,R ′)

4.7. Security Proof 113

Hybrid H10: this hybrid is identical to the previous hybrid, except that instead of

W s1
b,i ·F s2

b,i ,W
s′1

b,i ·F
s′2
b,i ,

we set
W s1

b,i ·F s2
b,i ·U

yi s3

b ,W
s′1

b,i ·F
s′2
b,i ·U

yi s′3
b .

Precisely

ct= (g s2 ,hs1 , {W s1
b,i ·F s2

b,i ·U
yi s3

b ,T s1
b,i ·H s2

b,i ·V
yi s4

b }b∈[2],i∈[n],R1,R),

ct′ = (g s′2 ,hs′1 , {W
s′1

b,i ·F
s′2
b,i ·U

yi s′3
b , T

s′1
b,i ·H

s′2
b,i ·V

yi s4

b }b∈[2],i∈[n],R ′
1,R ′)

Hybrid H11: this hybrid is identical to the previous hybrid, except that instead of choos-
ing

R,R ′ $←−GT ,

we set
R =Λ−s2 ·m1,R ′ =Λ−s′2 ·m1.

Precisely, the ciphertext is computed as follows:

ct= (g s2 ,hs1 , {W s1
b,i ·F s2

b,i ·U
yi s3

b ,T s1
b,i ·H s2

b,i ·V
yi s4

b }b∈[2],i∈[n],R1, Λ−s2 ·m1),

ct′ = (g s′2 ,hs′1 , {W
s′1

b,i ·F
s′2
b,i ·U

yi s′3
b ,T

s′1
b,i ·H

s′2
b,i ·V

yi s4

b }b∈[2],i∈[n],R ′
1, Λ−s′2 ·m1)

Hybrid H12: this hybrid is identical to the previous hybrid, except that instead of R1,R ′
1,

we set
e(g s3 , g s4),e(g s′3 , g s4),

which is identical to the real game with challenge bit b = 1, particularly for mes-
sage m1 and vector −→y . Precisely, the ciphertext is computed as follows:

ct=(g s2 ,hs1 , {W s1
b,i ·F s2

b,i ·U
yi s3

b ,T s1
b,i ·H s2

b,i ·V
yi s4

b }b∈[2],i∈[n], e(g s3 , g s4) ,

Λ−s2 ·m1),

ct′ =(g s′2 ,hs′1 , {W
s′1

b,i ·F
s′2
b,i ·U

yi s′3
b ,T

s′1
b,i ·H

s′2
b,i ·V

yi s4

b }b∈[2],i∈[n], e(g s′3 , g s4) ,

Λ−s′2 ·m1)

Proposition 2. If the DLin assumption holds relative to GroupGen, then H0 is computa-
tionally indistinguishable from H1.

Proof. 3

Let us assume there exists a PPT adversary A which distinguishes between H0 and
H1 with non-negligible advantage. We describe a simulator B which uses A, on input

(g , A = gα,B = gβ,C = g τ,D = gαη, Z) ∈G6,

and would output 1 if Z = gβ(η+τ) and 0 if Z is a random element in G.

3The proof is inspired by the paper [217]

114 Chapter 4. Perfect Inner Product Encryption Schemes

B interacts with A as follows:

Set Up phase. The adversary A sends to the simulator, B, two vectors −→x ,−→y ∈ Zn
p . The

simulator picks

g ′ $←−G,Ω̃,k, δ̃b ,θb , {w1,i , t̃1,i , fb,i ,hb,i }i∈[n],b∈[2]
$←−Zp ,

compute {w2,i , t̃2,i }i∈[n] such that for each i :

Ω̃= δ̃1w2,i − δ̃2w1,i = θ1 t̃2,i −θ2 t̃1,i .

Compute the master public key components as follows and returns it:

{Wb,i = g wb,i ,Fb,i = g fb,i }b∈[2],i∈[n], {Ub = Aδ̃b }b∈[2],

{Tb,i = A t̃b,i , Hb,i = g hb,i }b∈[2],i∈[n], {Vb = g θb }b∈[2],

h = AΩ̃,Λ= e(g , g ′),K1 = g k , K2 = g ′ 1
k

(4.4)

By doing so, B implicitly sets:

δb =αδ̃b , tb,i =αt̃b,i for b ∈ [2], i ∈ [n] and Ω=αΩ̃
which shows that each element of the master public key is independently and uniformly
distributed in Zp . Also, notice that for each i ∈ [n], we have:

δ1w2,i −δ2w1,i =αδ̃1w2,i −αδ̃2w1,i

= θ1αt̃2,i −θ2αt̃1,i

= θ1t2,i −θ2t1,i

=αΩ̃
=Ω.

(4.5)

Hence the output has the same structure as the output of the real setup algorithm.

Token query phase. Note that all the secret parameters except

{δb , tb,i }b∈[2],i∈[n],Ω

are known by B. When A asks for a query for a vector −→v , B picks:

λ1, λ̃2, {r̃i ,Φi }i∈[n]
$←−Z⋆p .

. When generating Tok−→v , the simulator implicitly sets:

λ2 =αλ̃2,ri =αr̃i

4.7. Security Proof 115

which are independently and uniformly distributed in Z⋆p . Token elements are set as
follows:

K3,i = A−δ̃2ri · gλ1vi w2,i xi = (by the above settings) = g−δ2ri · g vi w2,iλ1 .

K5,i = g−θ2φi · Aλ2vi t̃2,i xi = (by the above settings) = g−θ2φi · gλ2vi t2,i xi .

Similarly, K4,i = Aδ̃1ri · g−λ1vi w1,i xi ,

K6,i = g θ1ri · A−λ2vi t̃1,i xi .

KB =
n∏

i=1
A−ri g−Φi =

n∏
i=1

g−(αr̃i+Φi) =
n∏

i=1
g−(ri+Φi).

B knows { fb,i ,hb,i }b∈[2],i∈[n], hence it can compute K A.

Generating the challenge ciphertext. A sends message m0 to B. To generate a chal-
lenge ciphertext, B picks

s1, s2, s′1, s′2, s̃3, s̃4, s̃′3
$←−Z⋆p

such that:
s̃3 ̸= s̃′3.

In fact, B implicitly sets:
s3 = ηs̃3, s4 =βs̃4

and computes the ciphertext as follows:

ct1 = g s2 , ct′1 = g s′2 ,
ct2 = hs1 , ct′2 = hs′1 ,

ct3,i =W s1
1,i ·F s2

1,i ·D δ̃1 s̃3xi , ct′3,i =W
s′1

1,i ·F
s′2
1,i ·D δ̃1xi s̃′3 ,

ct4,i =W s1
2,i ·F s2

2,i ·D δ̃2 s̃3xi , ct′4,i =W
s′1

2,i ·F
s′2
2,i ·D δ̃2xi s̃′3 ,

ct5,i = T s1
1,i ·H s2

1,i ·Bθ1 s̃4xi , ct′5,i = T
s′1
1,i ·H

s′2
1,i ·Bθ1 s̃4xi ,

ct6,i = T s1
2,i ·H s2

2,i ·Bθ2 s̃4xi , ct′6,i = T
s′1
2,i ·H

s′2
2,i ·Bθ2 s̃4xi ,

ct7 = (e(Z ,g)
e(B ,C))s̃3 s̃4 , ct′7 = (e(Z ,g)

e(B ,C))s̃′3 s̃4 ,

ct8 = e(g , g ′)−s2 ·m0 ,ct′8 = e(g , g ′)−s′2 ·m0.

Since

D δ̃b xi s̃3 = gαδ̃bηs̃3xi =U xi s3
b

Bθb s̃4xi =V βs̃4xi
1 =V s4xi

b

for each i ∈ [n] the values ct3,i ,ct′3,i , . . . ,ct6,i ,ct′6,i are computed properly.

Analyzing the game. Let us analyze the two events, Z = gβ(τ+η) and Z
$←−G:

116 Chapter 4. Perfect Inner Product Encryption Schemes

1. Z = gβ(τ+η):

⇒ e(Z , g)

e(B ,C)
= e(gβ(τ+η), g)

e(gβ, g τ)

= e(gβ, g τ) ·e(gβ, gη)

e(gβ, g τ)

= e(gη, gβ)

⇒ ct7 = (
e(Z , g)

e(B ,C)
)s̃3 s̃4

= e(gηs̃3 , gβs̃4)

= e(g s3 , g s4),

ct′7 = e(g s′3 , g s4) (Same computation as above)

⇒A interacting with H0.

2. Z
$←− G, since A is a random element then ct7,ct′7 are also random elements in GT

which implies that adversary A interacts with H1.

Proposition 3. If the DBDH assumption holds relative to GroupGen, then H1 is computa-
tionally indistinguishable from H2.

Proposition 4. If the DLin assumption holds relative to GroupGen, then H2 is computa-
tionally indistinguishable from H3.

Proposition 5. If the DLin assumption holds relative to GroupGen, then H3 is computa-
tionally indistinguishable from H4.

Propositions 3,7,8 are proved in the Appendix 9.6.

Proposition 6. If the DLin assumption holds relative to GroupGen, then H4 is computa-
tionally indistinguishable from H5.

Proof. The simulator takes as input

(g , A = gα,B = gβ,C = g τ,D = gαη, Z
?= gβ(η+τ))

and by interacting with the adversary A, distinguish between the two cases Z = gβ(η+τ)

and Z
$←−G, a random element of the group.

SetUp and token query phase. B runs as in the SetUp phase and token query phase in
proposition 8.

Generating the challenge ciphertext. B chooses random elements

s̃1, s̃2, s̃3, s̃4, s̃′1, s̃′2, s̃′3,k
$←−Z∗

p

4.7. Security Proof 117

and computes the challenge ciphertext as follows:

ct1 =C · g s̃2 = g τ+s̃2

⇒ s2 = τ+ s̃2,

ct′1 =C k · g s̃′2 = g kτ+s̃′2

⇒ s′2 = kτ+ s̃2

ct2 = DΩ̃ · AΩ̃s̃1 = (gαΩ̃)(η+s̃1) = hη+s̃1

⇒ s1 = η+ s̃1

ct′2 = DkΩ̃ · AΩ̃s̃′1 = (gαΩ̃)(kη+s̃′1) = hkη+s̃′1

⇒ s′1 = kη+ s̃′1
ct3,i =W s̃1

1,i ·F s̃2
1,i ·U

s̃3xi
1 ·D w̃1,i ·C f1,i

=W s̃1
1,i ·F s̃2+τ

1,i ·U s̃3xi
1 · gηαw̃1,i ·F τ

1,i

=W s̃1
1,i ·F s̃2+τ

1,i ·U s̃3xi
1 · gη(w1,i−βδ1xi)

=W s̃1+η
1,i ·F s̃2+τ

1,i ·U (s̃3−ηβ)xi
1

⇒ s3 =−ηβ+ s̃3

ct4,i =W s̃1
2,i ·F s̃2

2,i ·U
s̃3xi
2 ·D w̃2,i ·C f2,i , (similar computation as ct3,i)

ct′3,i =W
s̃′1

1,i ·F
s̃′2
1,i ·U

s̃′3xi

1 ·Dkw̃1,i ·C k f1,i

=W
s̃′1

1,i ·F
s̃′2
1,i ·U

s̃′3xi

1 · g kηαw̃1,i ·F kτ
1,i

=W
s̃′1

1,i ·F
s̃′2+kτ
1,i ·U s̃′3xi

1 · g kη(w1,i−βδ1xi)

=W
s̃′1+kη

1,i ·F
s̃′2+kτ
1,i ·U (s̃′3−kηβ)xi

1

⇒ s′3 =−kηβ+ s̃′3

ct′4,i =W
s̃′1

2,i ·F
s̃′2
2,i ·U

s̃′3xi

2 ·Dkw̃2,i ·C k f2,i , (similar computation as ct′3,i)

ct5,i = T s̃1
1,i ·D t̃1,i ·H s̃2

1,i ·C h̃1,i ·Z θ1 yi · g s̃4θ1 yi

ct′5,i = T
s̃′1
1,i ·Dkt̃1,i ·H

s̃′2
1,i ·C kh̃1,i ·Z kθ1 yi · g s̃4θ1 yi

ct6,i = T s̃1
2,i ·D t̃2,i ·H s̃2

2,i ·C h̃2,i ·Z θ2 yi · g s̃4θ2 yi

ct′6,i = T
s̃′1
2,i ·Dkt̃2,i ·H

s̃′2
2,i ·C kh̃2,i ·Z kθ2 yi · g s̃4θ2 yi

Analysis of the game. First, notice that:

D t̃1,i = gηαt̃1,i = gη(t1,i−βθ1 yi)

= T η

1,i · g−βηθ1 yi ,

Dkt̃1,i = T kη
1,i · g−kβηθ1 yi

C h̃1,i = g τ(h1,i−βθ1 yi)

= Hτ
1,i · g−βτθ1 yi ,

C kh̃1,i = H kτ
1,i · g−kβτθ1 yi

118 Chapter 4. Perfect Inner Product Encryption Schemes

Therefore:

ct5,i = T s̃1
1,i ·D t̃1,i ·H s̃2

1,i ·C h̃1,i · (Z · g s̃4)θ1 yi

= T η+s̃1

1,i ·Hτ+s̃2
1,i · (g−β(τ+η) ·Z · g s̃4)θ1 yi

= T s1
1,i ·H s2

1,i · (g (−β(τ+η) ·Z · g s̃4)θ1 yi

ct′5,i = T
s′1
1,i ·H

s′2
1,i · (g (−kβ(τ+η) ·Z k · g s̃4)θ1 yi

Now we consider the following two cases:

1. Z = gβ(η+τ) :

g−β(τ+η) · Z · g s̃4 = g s̃4 ⇒ ct5,i = T s1
1,i ·H s2

1,i ·U
s4 yi
1

g−kβ(τ+η) ·Z k · g s̃4 = g s̃4 ⇒ ct5,i = T
s′1
1,i ·H

s′2
1,i ·U

s4 yi
1

⇒ The adversary interacts with hybrid H4

2. Z = g r :

g−β(τ+η) · Z · g s̃4 = g r+s̃4 ⇒ ct5,i = T s1
1,i ·H s2

1,i ·U
s4 yi
1

g−kβ(τ+η) ·Z k · g s̃4 = g kr+s̃4 ⇒ ct5,i = T
s′1
1,i ·H

s′2
1,i ·U

s′4 yi

1

⇒ The adversary interacts with hybrid H5.g−β(τ+η) ·Z · g s̃4 = g r+s̃4 ⇒ ct5,i = T s1
1,i ·H s2

1,i ·U
s4 yi
1

g (−kβ(τ+η) ·Z k · g s̃4 = g kr+s̃4 ⇒ ct5,i = T
s′1
1,i ·H

s′2
1,i ·U

s′4 yi

1

⇒ The adversary interacts with hybrid H5.

The proofs of indistinguishability for the other hybrids are the same as we have
proved, Table 4.10:

FIGURE 4.10: The indistinguishability of two games in the left side is proven sim-
ilar to the right side.

H5 −H6 Same as H4 −H5 H9 −H10 Same as H4 −H5

H6 −H7 Same as H3 −H4 H10 −H11 Same as H1 −H2

H7 −H8 Same as H2 −H3 H11 −H12 Same as H0 −H1

H8 −H9 Same as H5 −H4

119

Chapter 5

Verifiable IPE

“trust, but VERIFY! ”1

We encrypt our data, obfuscate our programs, anonymize our identities,
and apply many layers of masking to our images, all while communicating
anonymously.

We do, indeed, inhabit a cryptic universe.
Even though we feel safe with much security, there is a dark side to the story.
Too much security also protects the malicious parties, so we need to start over
and we need to think about this question:

Do we feel secure , in a world where everything is encrypted?

Contemplating of this question may imply that security is not sufficient and
that, in order to benefit from a secure protocols, we must establish another
notion, namely, verifiability.

This chapter will go over verifiability in further detail, followed by introducing
our verifiable IPE.

Contents
5.1 Introduction and Research Question . 120

5.2 Motivating Applications . 121

5.2.1 Perfectly Binding Polynomial Commitments 121

5.3 Verifiability in the Context of Functional Encryption 122

5.3.1 Security Notion of VFE . 123

5.4 VIP Relations . 124

5.5 Our Verifiable Inner Product Encryption Scheme 126

5.6 NIWI Proofs and Verification Algorithms . 128

5.6.1 Master Public Key Verification . 128

5.6.2 Token Verification Algorithm . 129

5.6.3 NIWI-Proof for Encryption Algorithm . 131

5.7 Conclusion . 134

1https://en.wikipedia.org/wiki/Trust,_but_verify

https://en.wikipedia.org/wiki/Trust,_but_verify

120 Chapter 5. Verifiable IPE

As an example of the need for verifiability, let us consider an election with a complex
ballot that employs the risk-limiting tally technique [227], discussed in detail in 9, i.e.,
where only a random subset of the components of the ballots are revealed during the
tally phase.

Now, consider that we employ a functional encryption scheme in this election as
follows. Each voter encrypts her favorite choice as a 0/1 vector vote = (v1, . . . , v5); vi ∈
{0,1}, for the candidate list (c1, . . . ,c5) and submits the ciphertext CT.

Two tellers T1 and T2 are given tokens tok1 and tok2; each token decrypts different
components of CT. Let say tok1 decrypts (ct1,ct3,ct4) and tok2 opens (ct1,ct2,ct5). In
the case of functional encryption, a dishonest party in charge of the token generation
algorithm may provide defective tokens for either T1 or T2 in order to manipulate the
election result or undermine election validity. As a result, the following could occur:

vote= (1,1,0,1,0), CT= (ct1,ct2,ct3,ct4,ct5) :
T1(CT,tok1) 7→ (0,∗,0,1,∗),

T2(CT,tok2) 7→ (1,0,∗,∗,0).

As the above computations demonstrate, at least one of the tokens must be defective
due to the incompatibility of two outputs. In other words, the ciphertext CT cannot be
the encryption of a single message. And in our example, this could result in one of two
effects: either the election outcome does not accurately reflect the real voter’s choice, or
the election’s validity is called into doubt.

It is worth mentioning that these flaws and inconsistencies are undetectable in dis-
tributed protocols that contain bulk data or stand-alone data. However they have a sig-
nificant impact on procedure outcomes. This suggests that to take advantage of a secure
cryptosystem, we need to define another concept, verifiability. Informally, in the above
example, verifiability ensures that there is a unique vote such that for every token, the
decryption algorithm outcome would stem from that unique vote.

5.1 Introduction and Research Question

In FE and IPE, the encryptors and the Central Authority (CA) that generate the tokens
are assumed to be honest. Indeed, as noticed by Badrinarayanan et al., in the presence
of any dishonest party (that is, either the party that generates the token or the party who
encrypts the message), the decryption outputs may be inconsistent, and this raises se-
rious issues in practical applications (e.g., auditing). For instance, a dishonest authority
might be able to generate a faulty token Tokv⃗ for a vector v⃗ = (1,0,3,0) such that Tokv⃗

enables the owner to decrypt the ciphertext, CT1 for a vector x⃗1 = (0,1,0,0) but using
the same token in decryption algorithm for the ciphertext CT2, generated with respect
to the vector x⃗2 = (0,2,0,1), outputs an error. Or a dishonest encryptor might generate a
faulty ciphertext that decrypts to an incorrect result with an honestly computed token.
These issues are particularly severe in the applications to functional commitments that
we will see later.

Verifiable Inner Product Encryption (VIPE) overcomes those limitations by adding
strong verifiability guarantees to IPE. VIPE is a special case of Verifiable Functional En-
cryption (VFE), firstly proposed by Badrinarayanan et al. [23] for general functionalities.
Informally speaking, in VIPE, there are public verification algorithms to verify that the

5.2. Motivating Applications 121

output of the setup, encryption and token generation algorithms are computed hon-
estly. Intuitively, suppose the master public key MPK and a ciphertext CT pass a pub-
lic verification test. In this case, it means a message m and a unique vector x⃗ – up to
parallelism – exist such that for all vectors v⃗ , if a token Tokv⃗ for v⃗ is accepted by the
verification algorithm then the following holds:

∀v⃗ :Dec(Tokv⃗ ,CT) = f v⃗ (⃗x,m).

The main components we employ for constructing a VIPE scheme are, our perfectly
correct IPE scheme 4 and Groth-Sahai NIWI-proof system 3.10.3.

Outline. In Section 5.3, we first formally define the verifiable Inner product Encryption
scheme, its security notion and some impossibility result regarding Verifiability. Then
as motivation we will present some of its applications in section 5.2. In Section 5.4 we
present the relation we use for our construction. And finally we will give a full descrip-
tion of our construction in section 5.5. Finally, this chapter will end with a description
of the verification algorithm in Section 5.6.

5.2 Motivating Applications

IPE has numerous applications, including Anonymous Identity-Based Encryption [59],
Hidden-Vector Encryption [56], and predicate encryption schemes supporting polyno-
mial evaluation [173]. Badrinarayanan et al. [23] show that making FE schemes verifi-
able enables more powerful applications. As an example, in this section, we show that
VIPE can be used to construct what we call a polynomial commitment scheme, which
corresponds to a functional commitment of Badrinarayanan et al. for the polynomial
evaluation predicate. The same construction can easily be adapted to construct func-
tional commitments for the inner-product predicate.

5.2.1 Perfectly Binding Polynomial Commitments

Using a polynomial commitment scheme (see also [170]), Alice may publish a commit-
ment to a polynomial poly(x) with coefficients inZp . If later Bob wants to know poly(m)
for some value m, that is the evaluation of the polynomial at some point; he sends m to
Alice, who replies with the claimed evaluation y and proof that y = poly(m). The proof
guarantees that the claimed evaluation is consistent with the committed polynomial.
We require the scheme to be perfectly binding.

We construct a polynomial commitment scheme for polynomials of degree at most
d from aΠvip = 〈VIP.SetUp,VIP.TokGen,VIP.Enc,VIP.Dec〉 scheme for vectors of dimen-
sion d +2 in the following way:

• Commitment Phase: To commit to a polynomial poly ∈ Zp [x] Alice performs the
following steps:

1. Define the vector x⃗:

poly(x) = ad xd +ad−1xd−1 + . . .+a1x +a0 ∈Zp [X]

=⇒−→x := (ad , ad−1, . . . , a1, a0,1) ∈Zd+2
p

2. Run VIP.SetUp(1λ,d +2) to generate (MPK,MSK)

122 Chapter 5. Verifiable IPE

3. Run the encryption algorithm for the attribute x⃗:

CT→VIP.Enc(MPK,−→x)

4. Output the commitment com := (MPK,CT).

• Opening phase:

1. Bob requests a query (m, y) to check if the commitment corresponds to a
polynomial poly such that poly(m) = y .

2. Alice, the Committer runs the token-generator algorithm of VIP for vector

−→v := (md ,md−1, . . . ,m,1,−y)

and sends Tok−→v as the opening.

3. Bob would accept the opening if and only if VIP.Dec(CT,Tok−→v) = 0.

• Correctness property is implied from the following computations:

〈⃗x, v⃗〉 = ad md +ad−1md−1 + . . .+a1m +a0 − y

= poly(m)− y

=⇒ VIP.Dec(CT,Tok−→v) = 0 iff poly(m) = y

It is straightforward to see that the above algorithms form a functional commitment (in
the sense of [23]) for the polynomial evaluation predicate. Therefore we refer the reader
to [23] for more details on functional commitments.

5.3 Verifiability in the Context of Functional Encryption

Firstly, we present a formal definition of a VIPE scheme. Essentially, VIPE is similar
to IPE, except it is endowed with extra verification algorithms VerifyCT,Verifytok and
VerifyMPK.

Definition 35. A verifiable inner product encryption scheme for a message space M and
a family Σ = {Σn}n>0 of vectors over some field is a tuple of PPT algorithms (here called
VIP)

Πvip = {SetUp,TokGen,Enc,Dec,VerifyMPK,VerifyCT,Verifytok} (5.1)

with the syntax and properties below:

• SetUp(1ℓ,n) → (MPK,MSK): as for IPE.

• TokGen(MPK,MSK, v⃗) −→ tokv⃗ : as for IPE.

• Enc(MPK,−→x ,m) →CT: as for IPE.

• Dec(MPK,tokv⃗ ,CT) → m ∈M∪ {⊥}: as for IPE.

• VerifyMPK(MPK) → {0,1}: this is a deterministic algorithm that outputs 1 if MPK
was correctly generated, or outputs 0 otherwise.

• VerifyCT(MPK,CT) → {0,1}: this is a deterministic algorithm that outputs 1 if CT
was correctly generated using the master public key on input some m in the message
space M and a vector x⃗, or outputs 0 otherwise.

5.3. Verifiability in the Context of Functional Encryption 123

• Verifytok(MPK, v⃗ ,tokv⃗) −→ {0,1}: this is a deterministic algorithm that outputs 1 if
tokv⃗ was correctly generated using the master secret key on input vector v⃗ , or outputs
0 otherwise.

• Perfect correctness: as for IPE.

• Verifiability: VIP is verifiable if for all MPK ∈ {0,1}∗, all CT ∈ {0,1}∗, there exists
n > 0, (⃗x,m) ∈Σn×M such that for all v⃗ ∈Σn and tokv⃗ ∈ {0,1}∗, the following holds:

Pr

Dec(MPK,tokv⃗ ,CT) = f v⃗ (⃗x,m) |
VerifyMPK(MPK) = 1,
VerifyCT(MPK,CT) = 1,
Verifytok(MPK, v⃗ ,tokv⃗) = 1

= 1

Intuitively verifiability states that each ciphertext (possibly with the malicious gen-
erated public key) should be associated with a unique message (⃗x,m) and decryption
for a function f v⃗ using any possibly maliciously generated token tokv⃗ should result in
f v⃗ (⃗x,m) for the unique message associated with the ciphertext [23].

Additional Note. We remark that a verifiability property does hold only in a functional
encryption system with the perfectly correct property. Because in case of (even) a neg-
ligible probability of error, a non-uniform adversary can choose the randomness (used
in encryption or token generation algorithms) where the verification procedure falsely
verifies the validity while the outcome of the algorithm does not match the actual values.

5.3.1 Security Notion of VFE

Similar to FE (See 4.2.1), two approaches capture the security notion for functional
encryption schemes; Game-based indistinguishability and simulation-based security,
both of which come with the flavor of adaptive versus non-adaptive, one versus many,
and fully versus selectively concept.

Simulation-Based Security. In [23], they show the implausibility result in a simulation-
based secure verifiable functional encryption scheme (where the adversary can request
keys arbitrarily). Furthermore, they demonstrate that even the most basic simulation-
based security is impossible to achieve for verifiable functional encryption. The defi-
nition of simulation-based security for verifiable functional encryptions scheme is the
same as for FE; we refer to 4.1 for more details.

Theorem 5.3.1 ([23]). There exists a family of functions, each of which can be represented
as a polynomial sized circuit, for which there does not exist any simulation-secure verifi-
able functional encryption scheme.

Indistinguishability-Based Security. We define a general version here. For a more de-
tailed definition, we refer to Section 4.2.1:

Definition 36. A verifiable functional encryption scheme Πvfe is {selective, fully}-secure
if all PPT adversary A has at most a negligible advantage in the experiment 5.1.

124 Chapter 5. Verifiable IPE

FIGURE 5.1: IND-CPA Security Game Exp
ind−ip
A (1ℓ,n)

• Selective Challenge Phase. A(1ℓ,n) −→ x⃗0, x⃗1 ∈ Σn . Then A sends these two vectors
to the challenger.

• Setup Phase. The challenger C generates the pair (MSK,MPK) by invoking the setup
algorithm on input (1ℓ,n). Then C sends MPK to A.

• Query Phase 1. A asks for the token for a vector v⃗i ∈Σn .

• Challenge Phase. A sends to the challenger two messages m0,m1 ∈M of the same
length.

• Challenge Phase. C flips a coin to generate random bit b and send

CT=VIP.Enc(MPK, x⃗b ,mb).

• Query Phase 2. Query Phase 2: same as Query Phase 1.

• Output Phase. A outputs a bit b′.

• Winning Condition. A wins the game if b′ = b and the following condition is met. It
is required that if m0 ̸= m1, 〈⃗x0, v⃗i 〉, 〈⃗x1, v⃗i 〉 ̸= 0 for all the vectors v⃗i queried in both
query phase 1 and 2, or 〈v⃗i , x⃗0〉 = 0 iff 〈v⃗i , x⃗1〉 = 0 otherwise. If the winning condition
is satisfied, the game’s output is 1 or 0 otherwise.

5.4 VIP Relations

Our VIPE is based on a perfectly correct IPE (cf. our IPE scheme of Construction 4.6),
a perfectly binding commitment scheme such as the commitment scheme proposed
in [141] and NIWI proofs for some specific relations that will be detailed below.

Let n ∈ N be the vector length and ℓ the security parameter. Let IP be a perfectly
correct IPE scheme, Commit be a perfectly binding commitment scheme and

NIWImpk = 〈Pmpk,Vmpk〉,NIWIenc = 〈Penc,Venc〉,NIWItok = 〈P tok,V tok〉

be NIWI proofs systems for, resp., the relations R,
mpk, R,

enc and R,
tok, that are essen-

tially instantiations of analogous relations in [23]. The construction of these NIWI sys-
tems are provided in Section 5.6.

5.4. VIP Relations 125

1.

RIP
mpk =

{
(x, w) :

x =mpk,

w = (msk,rmpk),

(mpk,msk) = IP.SetUp(1ℓ,n;rmpk)}
(5.2)

2.

RIP
tokk =

{
(x, w) :

x = (mpk,tok, v⃗),

w = (msk,rmpk,rtoken),

(mpk, (msk,rmpk)) ∈ R,
mpk
IP

,

tok= IP.TokGen(MSK, v⃗ ;rtok),}
(5.3)

3.

RIP
k,ct =

{
(x, w) :

x = (
(ct1,mpk1), . . . , (ctk ,mpkk)

)
,

w = (⃗
x,m,renc1 , . . . ,renck

)
,

k ∈ [4],

i ∈ [k] : cti = IP.Enc(mpki , x⃗,m;renci)}
(5.4)

4.

RIP
enc =

{
(x, w) :

x = ({ci }i∈[4], {ai }i∈[4], z0, z1),

w = (m, x⃗, {renci }i∈[4], i1, i2,rcom0 ,rcom1)

Penc
1 (x, w)⃗ePenc

2 (x, w)}
Penc

1 =True ⇐⇒ ((
(c1, a1), . . . , (c4, a4)

)
, (⃗x,m, {renci }i∈[4])

)
∈ R,

4,ct
IP

Penc
2 (x, w) =True ⇐⇒

i1, i2 ∈ [4]∧ (i1 ̸= i2)∧(((
ci1 , ai1), (ci2 , ai2)

)
, (⃗x,m,renci)

)
∈ R,

2,ct
IP

,

∧ z0 =Commit({ci }i∈[4];r
com
0)∧ z1 =Commit(0;rcom1)

(5.5)

126 Chapter 5. Verifiable IPE

5.

RIP
tok =

{
(x, w) :

x = (v⃗ , {ti }i∈[4], {ai }i∈[4], z0, z1)

w = ({bi }i∈[4], {rmpk
i }i∈[4], {rtoki }i∈[4], i1, i2, i3,rcom0 ,rcom1)

Ptok
1 =True

∀i ∈ [4] :
(
(ai , (bi ,rmpk

i)
) ∈ R,

mpk∧(
(ai , ti , v⃗i), (bi ,rmpk

i ,rtoki))
) ∈ R,

tok
IP ∧

z1 =Commit(1;rcom1)

Ptok
2

i1, i2, i3 ∈ [4]∧
(i1 ̸= i2)∧ (i1 ̸= i3)∧ (i2 ̸= i3)

∀ j ∈ [3] :
(
ai j , (bi j ,rmpk

i j
)
) ∈ R,

mpk∧((
ai j , ti j , v⃗i j

)
,
(
bi j ,rmpk

i j
,rtoki j

)
)
∈ R,

tok
IP

∧
z0 =Commit({ci }i∈[4];r

com
1)∧

∃m ∈M ∀i ∈ [4] IP.Dec(ci , ti) = f v⃗ (m)}

(5.6)

5.5 Our Verifiable Inner Product Encryption Scheme

Considering the relation, we describe our verifiable inner product encryption scheme
as follows:

1. VIP.SetUp(1ℓ,n) → (MPK,MSK):

(a) For i ∈ [4], run IP.SetUp(1ℓ,n) to generate (MPKi ,MSKi).

(b) Run the commitment algorithm to generate

Z0 =Commit(0;rcom0) , Z1 =Commit(1;rcom1).

(c) Output

VIP.MPK= ({MPKi }i∈[4],Z0,Z1),

VIP.MSK= ({MSKi }i∈[4],r
com
0 ,rcom1)

2. VIP.Enc(MPK,m, x⃗) →CT:

(a) For i ∈ [4], run the encryption algorithm to compute:

CTi = IP.Enc(MPK,m, x⃗;renci)

.

5.5. Our Verifiable Inner Product Encryption Scheme 127

(b) Set

x = ({CTi }i∈[4], {MPKi }i∈[4],Z0,Z1),

w = (m, x⃗, {renci }i∈[4],0,0,0|u0|,0|u1|)

(c) Run Penc(x, w) to generate πct for relation R,
enc(x, w). Note that Penc

1 (x, w) =
True.

(d) Output ciphertext
CT= ({CTi }i∈[4],πct).

3. VIP.TokGen(MPK,MSK, f v⃗):

(a) For i ∈ [4], run IP.TokGen(MSK, v⃗ ;rtoki) to generate toki
v⃗ .

(b) For
x = (v⃗ , {toki

v⃗ }i∈[4], {MPKi }i∈[4],Z0,Z1),

and

w = ({MSKi }i∈[4], {rtoki }i∈[4],0,0,0,0|rcom0 |, |rcom1 |)
run P tok to generate πtok to prove R,

tok(x, w) = True. Note that Ptok
1 (x, w) =

True.

(c) Output token tokv⃗ = ({toki
v⃗ }i∈[4],πtok).

4. VIP.Dec(MPK, f v⃗ ,tokv⃗ ,CT):

(a) Run the verification algorithms Vmpk,Venc,V tok on input the corresponding
pairs of statements and proof (the proof for the verification of the master pub-
lic key is set to the empty string). If some verification algorithms fail, stop and
output ⊥ or go to the next step otherwise.

(b) For all i ∈ [4], compute

m(i) = IP.Dec(tok(i)
v⃗ ,CTi),

and output the following:{
If ∃i1, i2, i3 ∈ [4]s.t .m = m(i1) = m(i2) = m(i3) ⇒ Output m.

If ̸ ∃i1, i2, i3 ∈ [4]s.t .m(i1) = m(i2) = m(i3) ⇒ Output⊥ .

5. VIP.VerifyMPK(MPK): Run
Vmpk(MPK,ϵ)

and output its result.

6. VIP.VerifyCT
(
({CTi }i∈[4], {MPKi }i∈[4],Z0,Z1),πct)

)
:

run
Venc(({CTi }i∈[4], {MPKi }i∈[4],Z0,Z1),πct

)
and output its result.

7. VIP.Verifytok
(
(v⃗ , {toki

v⃗ }i∈[4], {MPKi }i∈[4],Z0,Z1),πtok
)
:

run
V tok((v⃗ , {toki

v⃗ }i∈[4], {MPKi }i∈[4],Z0,Z1),πtok
)

and output its result.

128 Chapter 5. Verifiable IPE

Correctness of VIP follows from perfect correctness of IP. I N D-Security and Verifi-
ability of VIP follows as a corollary (following theorem 5.5.1) from the verifiability and
I N D-Security of the construction of [23] for general functions.

Theorem 5.5.1. If IP is a perfectly correct IND-secure IP scheme for message space M and
the set Zn

p of vectors of length n over Zp , and NIWImpk,NIWIct,NIWItok are NIWI systems

resp. for relations R,
mpk,R,

enc,R,
tok and Commit is a non-interactive perfectly binding and

computationally hiding commitment scheme, then VIP is an IND-secure VIPE scheme for
the class of inner product functionality over M and Zn

p .

5.6 NIWI Proofs and Verification Algorithms

This section presents the proof systems that we used in our VIP scheme to prove mem-
bership of relations R,

mpk, R,
tok and R,

enc. First for each of our relations2, we need to
define a system of equations such that the satisfiability of that system and the member-
ship in the relation are equivalent. Then, the GS generic prover and verifier algorithms,
NIWIGS = 〈PGS,VGS〉, can be used for such equations. In this section, for each of our re-
lations of Section 5.4, we will either define a corresponding system of equations or show
how to implement directly (without using GS proofs).

Notations: For the rest of this section, let us fix n ∈N as a vector space dimension and let
i ∈ [n],b ∈ [2]. Note we can efficiently check whether a string is a valid group element.
We recall what follows.

mpk= (
g ,h, {Wb,i ,Fb,i ,Tb,i , Hb,i ,Ub ,Vb},K1,K2,Λ

) ∈G4n+8 ×GT

msk= (
{wb,i , fb,i , tb,i ,hb,i ,δb ,θb},Ω,k

) ∈Z4n+6
p

tok= (K A,KB , {K3,i ,K4,i ,K5,i ,K6,i }i) ∈G4n+2

ct=
(
(ct1,ct2,

{
ct3,i , ct4,i

ct5,i , ct6,i

}
,ct7,ct8),

(ct′1,ct′2,

{
ct′3,i , ct′4,i
ct′5,i , ct′6,i

}
,ct′7,ct′8)

)
∈G8n+6 ×G2

T

5.6.1 Master Public Key Verification

Let x =mpk. Since g and e(g , g) are generators for the groups G and GT of prime order
p, we can represent all components of x as a power of either g or e(g , g). That is, there
exist:

i = 1, . . . ,n, b = 1,2 :Ω,k ′, wb,i , fb,i , tb,i ,hb,i , {δb ,θb ,kb} ∈Zp

such that:

h = gΩ,Wb,i = g wb,i ,Fb,i = g fb,i ,Ub = gδb ,Kb = g kb

Λ= e(g , g)k ′
,Tb,i = g tb,i , Hb,i = g hb,i ,Vb = g θb

2Actually, we will implement some or part of them not directly using GS proofs.

5.6. NIWI Proofs and Verification Algorithms 129

Input: mpk,
Output: 1 if mpk is a well-generated master public key for IP scheme and 0 otherwise

(1) If Λ ̸= e(K1,K2). output 0 otherwise go to the next step

(2) For i = 1 to n do :

(i .a) If e(U1,W2,i) ·e(U2,W1,i)−1 ̸= e(h, g) output 0 else go to the next step

(i .b) If e(V1 ,T2,i) ·e(V2 ,T1,i)−1 ̸= e(h, g) output 0 else go to the next step

(3) Output 1.

FIGURE 5.2: Master public key verification algorithm. (R,
mpk
IP

’s membership)

The following holds:

e(g ,h) = e(U1,W2,i) ·e(U2,W1,i)−1

= e(V1,T2,i) ·e(V2,T1,i)−1

⇒
e(g , gΩ) = e(gδ1 , g w2,i) ·e(gδ2 , g−w1,i)

= e(g θ1 , g t2,i) ·e(g θ2 , g−t1,i)

⇒
Ω= δ1w2,i −δ2w1,i

= θ1t2,i −θ2t1,i .

e(K1,K2) = e(g k1 , g k2)

=Λ= e(g , g k ′
)

⇒ k ′ = k1k2

By defining g ′ := g k ′
,K1 := g k1 ,K2 := g k2 , it follows that: Λ= e(K1,K2),K1 = g k ,K2 = g ′ 1

k

Hence, we have the verification algorithm in Fig. 5.2 for the master public key:

5.6.2 Token Verification Algorithm

As defined in Section 5.4, there are two relations for tokens, R,
tok
IP and R,

tok. The algorithm

in Fig. 5.3 verifies membership in relation R,
tok
IP .

Correctness of the algorithm: For simplicity, let’s assume v1 ̸= 0 and i∗ = 1.

• Λ∗
1 ,Λ∗

2 ∈GT ⇒∃λ1,λ2 ∈Zp s.t . :

{
Λ∗

1 = e(g ,h)λ1v1 ,

Λ∗
2 = e(g ,h)λ2v1

• ∀i ∈ {1,2, . . . ,n} ∃ri ,ri
′ ∈Zp s.t .

{
K3,i = g−δ2ri · gλ1vi w2,i ,

K4,i = gδ1r ′
i · g−λ1vi w1,i

130 Chapter 5. Verifiable IPE

Input: MPK,−→v = (v1, . . . , vn) ̸= −→
0 ,tok

Output: 1 if tok is a well-generated token for IP scheme and 0 otherwise

1. If −→v =−→
0 output 0 else let i∗ be an index such that vi∗ ̸= 0

2. Compute Λ∗
1 = e(K3,i ,U1) ·e(K4,i ,U2) and Λ∗

2 = e(K5,i ,V1) ·e(K6,i ,V2)

3. If Λ∗
1 = 1GT OR Λ∗

2 = 1GT output ⊥
4. For i = 1 to n do:

(a) If
(
e(K3,i ,U1) ·e(K4,i ,U2)

)vi∗ ̸= (Λ∗
1)vi output 0

(b) If
(
e(K5,i ,V1) ·e(K6,i ,V2)

)vi∗ ̸= (Λ∗
2)vi output 0

5. If Λ
∏n

i=1 e(K3,i ,F1,i)−1 ·e(K4,i ,F2,i)−1 ·e(K5,i , H1,i)−1e(K6,i , H2,i)−1 ̸= e(K A , g) output 0.

6. If
∏n

i=1 e(K3,i ,W1,i) ·e(K4,i ,W2,i) ·e(K5,i ,T1,i) ·e(K6,i ,T2,i) ̸= e(h,KB)−1 output 0.

7. Output 1.

FIGURE 5.3: Token verification algorithm. (R,
tok
IP

’s membership)

Hence we obtain:

e(K3,i ,U1) ·e(K4,i ,U2) = e(g−δ2ri · gλ1vi w2,i , gδ1) ·e(gδ1r ′
i · g−λ1vi w1,i , gδ2)

= e(g , g)δ1δ2(r ′
i−ri) ·e(g ,h)λ1vi

⇒(
e(K3,i ,U1) ·e(K4,i ,U2)

)v1 = e(g , g)v1δ1δ2(r ′
i−ri) ·e(g ,h)λ1v1vi

(5.7)

• Step 3: Λ∗
1 ̸= 1GT ,Λ∗

2 ̸= 1GT ⇒λ1 ̸= 0,λ2 ̸= 0

• Step 4.a: If
(
e(K3,i ,U1) ·e(K4,i ,U2)

)v1 = (Λ∗
1)vi ⇒

e(g , g)v1δ1δ2(r ′
i−ri) ·e(h, g)λ1v1vi = e(g ,h)λ1v1vi

⇒
e(g , g)v1δ1δ2(r ′

i−ri) = 1GT

⇒

∀i ∈ [n] : ri = r ′
i ⇒

{
K3,i = g−δ2ri · gλ1vi w2,i ,

K4,i = gδ1ri · g−λ1vi w1,i

And similar computations show that the equality in step (4.b) holds for all i ∈ [n].
Then we conclude that there exists φi ∈Zp such that:

K5,i = g−θ2φi · gλ2vi t2,i ,K6,i = g θ1φi · g−λ2vi t1,i .

5.6. NIWI Proofs and Verification Algorithms 131

• Step 5

K A = g ′ n∏
i=1

K
− f1,i

3,i K
− f2,i

4,i K
−h1,i

5,i K
−h2,i

6,i ⇐⇒

⇐⇒ e(K A, g) = e(g ′ n∏
i=1

K
− f1,i

3,i K
− f2,i

4,i K
−h1,i

5,i K
−h2,i

6,i , g)

⇐⇒ e(K A, g) =Λ ·
n∏

i=1
e(K3,i ,F1,i)−1.e(K4,i ,F2,i)−1.e(K5,i , H1,i)−1 ·e(K6,i , H2,i)−1.

• Step 6

n∏
i=1

e(K3,i ,W1,i) ·e(K4,i ,W2,i) ·e(K5,i ,T1,i) ·e(K6,i ,T2,i) = e(h,KB)−1

=
n∏

i=1
e(g ri (δ1w2,i−δ2w1,i), g) ·e(gφi (θ1t2,i−θ2t1,i), g) = e(h,KB)−1

=
n∏

i=1
e(g ,h)ri+φi = e(h,KB)−1 ⇒ KB =

n∏
i=1

g−(ri+φi)

The second relation is a disjunction of two predicates, R,
tok(x, w) = P tok

1 ∨P tok
2 . The proof

of membership for this relation can be implemented using the equations for the token
verification algorithm for relation R,

tok
IP 5.3 and assuming to have pairing product equa-

tions corresponding to the commitments in the two predicates above. We skip further
details.

5.6.3 NIWI-Proof for Encryption Algorithm

For the relation R,
ct
IP, we first provide proof of satisfiability for a system of equations re-

lated to a single ciphertext, that is k = 1. We will later extend it to the case of two cipher-
texts, that is k = 2. For k > 2, the algorithm is similar to the case k = 2.

Let x = (mpk,ct). We define the following variables for i ∈ [n]:

S1 = g s1 ,S3 = g s3 ,S4 = g s4 ,Xi = g xi ,S ′
1 = g s′1 ,S ′

3 = g s′3 ,U1 =U s3
1 ,

U2 =U s3
2 ,V1 =V s4

1 ,V2 =V s4
2 ,U ′

1 =U
s′3
1 ,U ′

2 =U
s′3
2 ,K1 = K s2

1 ,K′
1 = K

s′2
1

We have the following Equations related to component ct2(ct′2):

e(ct2, g) = e(hs1 , g) = e(h, g s1) = e(h,S1),
(
e(ct′2, g) = e(h,S ′

1)
)

and related equation to ct3,i for i ∈ [n]: (Same computation results the same equations
for ct j ,i ,ct′j ,i for j = 3,4,5,6)

e(ct3,i , g) = e(W s1
1,i , g) ·e(F s2

1,i , g) ·e(U s3xi
1 , g)

= e(W1,i , g s1) ·e(F1,i , g s2) ·e(U s3
1 , g xi)

= e(W1,i ,S1) ·e(F1,i ,ct1) ·e(U1,Xi)

⇒e(ct3,i , g) ·e(F1,i ,ct1)−1 = e(W1,i ,S1) ·e(U1,Xi)

132 Chapter 5. Verifiable IPE

The equations show that the exponent of U s3
b and V s4

b in ct3,i ,ct4,i ,ct5,i ,ct6,i are xi . So
we have the following equation:

e(U1,U2) ·e(U−1
1 ,U2) = e(U s3 ,U2) ·e(U−1

1 ,U s3
2)

= e(U1,U2)s3−s3

= 1GT

e(V1,V2) ·e(V −1
1 ,V2) = e(V s4 ,V2) ·e(V −1

1 ,V s4
2)

= e(V1,V2)s4−s4

= 1GT

The equation related to ct7 = e(g s3 , g s4) is the following:

ct7 = e(g s3 , g s4) = e(S3,S4),

ct′7 = e(g s′3 , g s4) = e(S ′
3,S4)

To prove s3 ̸= s′3, we just need to check whether ct7 ̸= ct′7 or not.

ct7 ̸= ct′7 ⇒ e(g s3 , g s4) ̸= e(g s′3 , g s4) ⇒ s3 ̸= s′3.

The equation related to ct8,ct′8 is the following:

ct8 =Λ−s2 ·m,ct′8 =Λ−s′2 ·m

⇒ct−1
8 ·ct′8 =Λs2 ·m−1Λ−s′2 ·m

=Λs2−s′2

⇒ct−1
8 ·ct′8 = e(K1,K2)s2−s′2 = e(K1,K s2

2) ·e(K −1
1 ,K

s′2
2) =

e(K1,K2) ·e(K −1
1 ,K′

1)

And to prove that ct1 = g s2 and ct8 =λ−s2 ·m, we add the following equation:

e(ct1,K1) = e(g ,K1),

e(ct′1,K1) = e(g ,K′
1)

So we have the following system of equations for one single ciphertext.
Now we need to provide proof that two ciphertexts ct, ĉt are the encryption of a single

message m and a single attribute −→x :

Xi = g xi ,X̂i = ĝ xi ⇒
e(Xi , ĝ) = e(g ,X̂i)

⇒ e(Xi , ĝ) ·e(g ,X̂i)−1 = 1GT

5.6. NIWI Proofs and Verification Algorithms 133

FIGURE 5.4: Ect : Equation for encryption verification algorithm.

e(ct2, g) = e(h,S1),

e(ct′2, g) = e(h,S ′
1)

e(ĉt2, ĝ) = e(ĥ, Ŝ1),

e(ĉt′2, ĝ) = e(ĥ, Ŝ ′
1)

e(ct3,i , g) ·e(F1,i ,ct1)−1 = e(W1,i ,S1) ·e(U1,Xi)

e(ct′3,i , g) ·e(F1,i ,ct′1)−1 = e(W1,i ,S ′
1) ·e(U ′

1,Xi)

e(ct4,i , g) ·e(F2,i ,ct1)−1 = e(W2,i ,S1) ·e(U2,Xi)

e(ct′4,i , g) ·e(F2,i ,ct′1)−1 = e(W2,i ,S ′
1) ·e(U ′

2,Xi)

e(ct5,i , g) ·e(H1,i ,ct2)−1 = e(T1,i ,S1) ·e(V1,Xi)

e(ct′5,i , g) ·e(H1,i ,ct′2)−1 = e(T1,i ,S ′
1) ·e(V1,Xi)

e(ct6,i , g) ·e(H2,i ,ct2)−1 = e(T2,i ,S1) ·e(V2,Xi)

e(ct′6,i , g) ·e(H2,i ,ct′2)−1 = e(T2,i ,S ′
1) ·e(V2,Xi)

ct7 = e(S3,S4),ct′7 = e(S ′
3,S4),

ĉt7 = e(Ŝ3, Ŝ4), ĉt′7 = e(Ŝ ′
3, Ŝ4)

ct−1
8 ·ct′8 = e(K1,K2) ·e(K −1

1 ,K′
1),

ĉt−1
8 · ĉt′8 = e(K̂1,K̂2) ·e(K̂ −1

1 ,K̂′
1)

e(ct1,K1) = e(g ,K1),

e(ct′1,K1) = e(g ,K′
1)

134 Chapter 5. Verifiable IPE

Notice that ct8,ct′8 are the only components of the ciphertext which are related to the
message, m,so we have:(

ct8 =Λ−s2 m, ĉt8 = Λ̂−ŝ2 m
)
⇒ ct8ĉt

−1
8 =Λ−s2 · Λ̂ŝ2

e(K s2
1 ,K −1

2) ·e(K̂ ŝ2
1 , K̂2) = e(K1,K −1

2) ·e(K̂1, K̂2)

= e(K −1
1 ,K2) ·e(K̂1,K̂2)

=Λ−s2 · Λ̂ŝ2

= ct8ĉt
−1
8

So, the prover has to provide proof for the following system of equations:

Ect−ĉt :



ct8ĉt
−1
8 = e(K1,K −1

2 ,) ·e(K̂1, K̂2)

ct8ĉt
−1
8 = e(K −1

1 ,K2) ·e(K̂1,K̂2)

e(g ,K1) = e(ct1,K1)

e(ĝ ,K̂1) = e(ĉt1, K̂1)

e(Xi , ĝ) ·e(g ,X̂i)−1 = 1GT

Summing up, to provide the NIWI-proof system for the encryption algorithm, the prover
uses Groth-Sahai proof-system for the system of equations, ECT =Ect∧Ect−ĉt.

5.7 Conclusion

Our main contribution is the first efficient verifiable (attribute-hiding) IPE scheme from
bilinear groups. The privacy of our scheme is based on the standard DLin assumption
whereas its verifiability is unconditional. Towards this goal, we also constructed the
first perfectly correct inner product encryption scheme for plaintexts of arbitrary length.
Our VIPE scheme is selectively secure only; we leave as an interesting open problem the
construction of a fully secure one.

135

Part II

Verifiable Secure E-Voting Protocols

137

Developing an electronic voting system with all of the desired
features is undoubtedly challenging, if not impossible; secrecy
and privacy on one side, verifiability and coercion resistance
on the other, and, most importantly, usability and efficiency, a
complicated challenge.
That is correct. Democracy is not achieved for a small price,
even in the electronic world!
In the second part of my thesis, I present my research on se-
cure and verifiable electronic voting protocols. I have mainly
worked on instantiating e-voting protocols with cryptographic
primitive from the first part, providing a security analysis of
the system while always keeping eyes on the efficiency and the
voter-friendly property of the protocol.

139

Chapter 6

Building Blocks; Verifiable E-Voting
Protocols

An electronic voting protocol (e-voting for short) can be considered a dis-
tributed system. Extensive research has been conducted to investigate the
properties and requirements of e-voting protocols both from a technical [46,
85, 92, 241, 221] and legal point of view [254, 187, 208, 99].
In this chapter we give an overview of an e-voting protocol and its require-
ments. Later we, formally present the computational framework and formal
definition as we will use later in our research.

Contents
6.1 Introduction . 140

6.1.1 Protocol Participants and Procedures . 140

6.1.2 Security Notions in the Context of E-Voting Protocols 142

6.2 Formal Definitions . 143

6.2.1 Computational Model . 143

6.2.2 Coercion-Resistance . 145

6.2.3 Privacy . 146

6.2.4 Receipt-Freeness . 146

6.3 Verifiability in the Context of E-Voting Protocol 147

6.3.1 Verifiability; Formal Definition . 147

6.4 Simulation-Based Security in E-Voting Protocol 149

6.4.1 bPRIV Property . 149

6.4.2 Strong Consistency . 150

6.4.3 Strong Correctness . 152

140 Chapter 6. Building Blocks; Verifiable E-Voting Protocols

6.1 Introduction

In order to be able to analyze and evaluate an e-voting scheme using accurate mathe-
matical tools and concepts, we must first develop a solid foundation for an e-voting sys-
tem, then describe all of the related concepts and properties, establish a robust frame-
work, and choose an appropriate computing model. To begin to establish such a foun-
dation, we consider an electronic voting system to take the form of distributed crypto-
graphic protocols. These protocols make use of cryptographic primitives (e.g. encryp-
tion, signature) to provide privacy, protect voters against malicious parties.

As any distributed protocol, specifically an e-voting protocol, is operated by a group
of participants and follows some specified algorithms. We begin with a generic descrip-
tion of e-voting protocol, including protocol’s participants, roles, and phases.

6.1.1 Protocol Participants and Procedures

An e-voting protocol, in its broadest sense, consists of the setup and registration phase,
the ballot-casting ceremony, the tally phase, and the verification phase, all of which are
carried out by the entities listed below. We should highlight that any e-voting system
can either put a variety of roles on a single party or completely abolish a role.

Protocol Participants.

• Election Authority is a party in charge of running the election, declaring election
policies, and appointing other parties.

• Election Trustee produces and publishes public and private key pairs for the elec-
tion. This is a simplified version of the real-world protocol that all of its keys are
generated distributively among trustees.

• Voters who intend to vote may use a Voter Supporting Device (vsd) such as a desk-
top computer or smartphone. vsd is a device that plays a role as an interface be-
tween the voter and the voting server. It generates voters’ ballots, casts the bal-
lot on the bulletin board, and could also perform the verification step. We let
{v1, . . . ,vn} refer to the set of legitimate voters; By a legitimate voter, we mean the
voter who is registered legally in the registration phase.

• A voting server that plays the role of a ballot box and collects the ballots from all
voters.

• A set of tabulation tellers are in charge of the tallying process. They collect the
ballots, tally them and output the election result (see below).

• Bulletin Board, BB operates as a public append-only broadcast channel to dis-
tribute all election-related materials, such as public parameters, cast ballots, and
tally phase information. Some e-voting schemes consider a set of ballot boxes to
which voters cast their votes and a bulletin board that publishes the public in-
formation. In our work, the bulletin board is in charge of both tasks. An honest
bulletin board keeps a list of all the input it receives from arbitrary participants
and returns the list upon request. In a standard model of e-voting scheme, we as-
sume a single trustworthy bulletin board. An honest bulletin board keeps a record
of all the input it receives from random participants and distributes it on demand.

6.1. Introduction 141

As we will see, most models (as well as many protocols) assume a single reliable
bulletin board.

• A set of supervised registrars (SR) are in charge of administrating the electoral reg-
ister. They register legitimate voters and provide them with their credentials.

• Auditors/judges verify particular information at the end or throughout the election
in order to detect malicious behaviour. Typically, these checks are based simply
on publicly available data and so can be performed by any party.

• The coercer is a party that maliciously attempts to force some parties to deviate
their own choice. The coercer is not formally a participant in e-voting protocols,
however, implicitly we consider its role which can be carried out by any participant
of the protocol or some external party.

Protocol Phases: The following is a brief description of a conventional e-voting proto-
col.

• Setup phase: In this phase, the election authority members declare the election’s
policy and trustees. Election policy establishes procedures for re-voting and all
the election parameters such as the election identifier, list of candidates, list of
eligible voters, opening and closing times, as well as defining the resultant func-
tions. Technically, the election authority determines the cryptographic primitives
and algorithms for the protocol during this step. Then the Election trustees run
the related algorithms and procedures to generate the election parameters, both
public and private parameters such as the election’s secret key. At the end of this
phase, the public parameter of election, such as election policy, algorithms and
procedures are published on the bulletin board.

• Registration phase: In this phase, all protocol participants generate their key ma-
terial and publish the respective public parts. Each voter vi is assigned her or his
credentials, including the public and the private key. After offline and online regis-
tration phases, a list of legitimate voters along their public parameters is published
on the bulletin board according to the election policy.

• The voting ceremony is the phase where voters generate their ballot and cast their
ballot by sending it to the append-only public bulletin board.

• Tally phase: The order of this phase depends on the election policy. Nevertheless,
a generic e-voting scheme has the following steps in a different order.

1. Verify the validity of each ballot, either illegitimate voter or invalid ballot.

2. Remove the invalid ballots.

3. Detect whether any voter casts more than one ballot and then choose one
ballot for each voter based on the election policy.

4. Anonymize the ballots by removing the public-id of each ballot and perform-
ing some mix-net servers.

5. Apply the result function and compute the election result.

Additional Note. A result function, fres, is a mapping that takes a pair (id,voteid)
(voter identifiers and their vote) as input and returns a value (bit-string) that

142 Chapter 6. Building Blocks; Verifiable E-Voting Protocols

represents the election result. For instance, if the election policy states that
the winner is the person who receives the most votes, then:

fres
(
(5, A), (2, A), (4,B), (6,B), (1, A), (3,C)

) 7→ A

Of course, we can write another function, gres, that on the mentioned input
returns

gres
(
(5, A), (2, A), (4,B), (6,B), (1, A), (3,C)

) 7→ (A : 3,B : 2,C : 2),

resulting in the same winner, but from a security standpoint, we regard fres
and gres to be two different result functions.

• Verification phase: During this phase, the whole process of the election should be
verified, and it consists of two distinct operations. The first is conducted by indi-
vidual voters using some secret parameters. The second one is formally carried
out by some auditors/judges, but it must also be available for public verification.
This means that any individual can verify the election process without requiring
any secret information.

6.1.2 Security Notions in the Context of E-Voting Protocols

There have been numerous properties proposed to describe the level of security and re-
liability of an electronic voting protocol. Among them, privacy and verifiability are the
most significant ones. The terms privacy and verifiability in an e-voting system refer
to a broad concept incorporating various characteristics. As a result, we distinguish be-
tween the following properties, each capturing a different aspect of privacy and security.

• Privacy as a fundamental human right [249] guarantees that all voters cast their
ballot as intended without any external force and also ensures that no informa-
tion about the voter’s intention is leaked, aside from what can be deduced from
the election result. Hence, in the context of e-voting protocol, we consider the
following properties:

1. Ballot Privacy: The protocol system must not leak any additional informa-
tion on how each voter cast the ballot [226, 177, 92], aside from the informa-
tion available from the election result. This also includes hiding whether a
particular voter has participated in the election [144, 84].

2. Receipt-Freeness: It states the protocol should not provide any evidence that
helps voters prove how they voted to a third party [211, 40]. In fact, it ex-
presses a stronger notion of privacy, stating that my vote should stay hidden
even if I am eager to disclose it. More specifically, receipt-freeness implies
that, even if an attacker forces the voter to reveal all of the information about
the election (e.g., any confirmation message), he should not be able to tell
whether the voter provided her true vote or a forged one.

3. Coercion-Resistance: The protocol should preserve privacy even for the voter
under coercion. Coercion resistance is essential in voting protocols because
it protects voters from hostile parties such as coercers or vote-buyers who at-
tempt to impose them to vote in a certain way [226, 168, 80].

4. Fairness: The voting system should not reveal any partial results before the
voting is finished [177].

6.2. Formal Definitions 143

• Verifiability captures the fact that the outcome of the tally phase is an actual elec-
tion result, and it can be verified. As defined by Sako and Killian [230], a verifiable
e-voting protocol should fulfil the following two properties:

1. Individual Verifiability: All voters can verify that their cast ballots are in-
cluded in the set of all votes. This phase is carried out in a designated-verifier
way and is not necessary a public-verifier.

2. Universal Verifiability: Any observer can verify that the tally has been cor-
rectly computed from the sets of votes. In contrast to individual verifiability,
this phase must be publicly verifiable.

The above two properties can be broken down into three distinct steps: cast-as-
intended, recorded-as-cast and tallied-as-recorded. Any electronic voting system
that includes a verification mechanism for all these three steps is referred to as
End-to-End Verifiable protocol.

6.2 Formal Definitions

Before we can formally define, analyse and examine the properties of electronic voting
protocols in our study, we must formally define the computational model. Here, we
present our computational model, which is a simplification of the general and compre-
hensive computational framework introduced in [182]. Consider the protocol descrip-
tion Πevoting. We define the following concepts.

6.2.1 Computational Model

In this section, we present a generic definition of an e-voting protocol and the computa-
tional model that we will use later to formalize the properties of our e-voting protocols.
we customize the KTV framework introduced in [182] which is based on the interactive
Turing machines (ITMs) communicate via tapes. The ITMs may perform probabilis-
tic polynomial-time computations in the length of the security parameter and the in-
put received so far. Following [182] an e-voting protocol specifies the process (program)
carried out by honest voters and honest voting authorities such as honest registration
tellers, tallying tellers, bulletin board, etc along with some public parameters pp. First
we recall the main concepts used in KTV framework.

Process is a set of probabilistic polynomial-time Interactive Turing Machines (ITMs)
that can perform internal computation and can communicate with other processes by
sending messages via (external) input/output channels. A single session-run of a pro-
tocol includes a description of the corresponding process, the security parameter, and
all random coins used by the program. Namely a run is determined by the random
coins used by the programs in the process. As a result, the process defines a family of
probability distributions over a run, which are indexed by the security parameter. Each
process is initiated by a program known as a master program, and at each point during
the execution of a process, only one program is active. We present the process by

πℓ = p1∥p2∥ . . .∥pt

where pi s are PPT programs and each of them take as input the security parameter ℓ.
We assume all program pi has a running time polynomial in term of ℓ. Additionally, we

144 Chapter 6. Building Blocks; Verifiable E-Voting Protocols

let π1∥π2 to refer the composition of two processes π1 and π2.

An e-voting protocol is a tuple ofΠevoting = 〈nv,Agent,Πh,cList,Γelc, fres〉1 with nv voters
where:

• Agent is a finite set of protocol participants (parties). In a typical e-voting proto-
col, Agent includes voters {v1, . . . ,vnv}, election trustee T, registrar R and a bulletin
board BB. We also assume Agent includes scheduler s which acts as the mas-
ter program of the protocol process and trigger the protocol participants and the
adversary in the appropriate order. We consider a set of channels which agents
communicate through them with each other and also a channel that the adver-
sary connects to the agent through that.

We use a positive boolean formula over propositions of the form hon[a] for an
agent a ∈ Agent to describe a group or groups of participants that can guaran-
tee, when running their honest programs, that a protocol’s goal is achieved. For
example the following formula is true if the bulletin board, the scheduler and at
least one of the voters are honest:

hon[BB]∧hon[s]∧ (
hon[v1]∨ . . .∨hon[vn]

)
(6.1)

Additional Note. Although the protocol description does not provide any spe-
cific program for coercer, it is treated as an implicit agent. It is required that in
security assumptions (or treat model), the coercer’s limitations are specifically de-
scribed, such as computationally bounded coercer. Formally, a coercer is a PPT
interactive algorithm which connects to protocol agents, instructs them to per-
form a dummy strategy dum that represents all the possible programs the coercer
can ask to achieve the specific goal ρ∗. Any participant of the protocol or some
external party can carry out the coercer program.

• Πh = {π̂[a] : a ∈ Agent} is a finite set where for a ∈ Agent, π̂[a] is a description of a
program that agent a runs (if a is honest).We distinguish between honest and dis-
honest agent. The honest parties follow the programs determined in the protocol,
π̂[a], whereas dishonest parties who are under the control of the coercer, deviate
from the pre-determined program in arbitrary ways. We use π∗

a to model potential
dishonest behavior of a. We assume the coercer completely controls the dishonest
voters but a voter under coercer can either run the dum strategy or run the counter
strategy to achieve her own goal ρ(see 37). Furthermore, the voter under obser-
vation is an honest voter who runs the program honestly with her honest choice,
while an observer attempts to guess her choice.

An instance of protocol Πevoting is a process of the form π̂Π∥πA, where

π̂Π = π̂a1∥ . . .∥π̂ak with ai ∈Agent,

and πA represents an arbitrary probabilistic polynomial-time program that an ad-
versaryAmay perform, including all dishonest agents,π∗

1∥ . . .∥π∗
m . A run ofΠevoting

is a run of some instance of the protocol.

1In the original definition of the protocol in [182] they mention some other parameters such as the set of channels,
but to avoid the heavy notation and more importantly since we don’t use them in our analyze, we don’t include them
in our definition of the protocol.

6.2. Formal Definitions 145

• cList is the set of all possible valid candidate (choices)2 including ⊥, a special sym-
bol that indicates the vote is invalid or has not been cast, so does not have to be
counted.

• Γelc is probability distribution on the possible choices, including abstention i.e., if
the possible choice number is k then

Γ= (p0, p1, . . . , pk) ;
k∑

i=0
pi = 1

where p0 is the probability of abstention. An honest voter makes her choice ac-
cording to this distribution.3 We suppose that the coercer is aware of candidate
distribution, maybe through the use of opinion surveys, and that he employs this
information in his strategy. According to intensive research, the precise distribu-
tion is crucial for a system’s level of coercion-resistance. Hence we make this dis-
tribution explicit.

• fres is a result function that takes a list of ballots/votes as input and returns a string,
on which the election results are determined. For instance, a result function may
be one that computes the total number of votes cast for each candidate.

Definition 37. Property γ of a protocol is a subset of all runs of Πevoting. For a property
γ we let Pr

[
Πevoting(ℓ) 7→ γ

]
to denote the probability that a run of Πevoting with security

parameter ℓ belongs to γ.

Goal: In the KTV framework, concepts such as verifiability and coercion-resistance are
interpreted based on the desired goals of a protocol. As an example for voting protocols,
the desired goal could be that the announced election result reflects voters’ actual votes.
Formally, a goal ρ is a protocol property. If the property ρ is supposed to imply that the
coerced voter wishes to vote for candidate c∗ then ρ would contain all runs in which the
coerced voter voted for this candidate, and this vote is in fact tallied.

Definition 38. The ideal protocol is a protocol in which voters v1, . . .vn send their choice
c1, . . . ,cn directly to the fully trusted party which then computes fres(c1, . . . ,cn) = res and
outputs the result without revealing any additional information.

Now based on the KTV framework we define verifiability and coercion resistance
properties.

6.2.2 Coercion-Resistance

In [181], the authors present a definition of quantitative coercion-resistance following
similar ideas as in Definition 40. We will here use their strategy version. The idea is
that the parameter δcr bounds the ability of a coercer being able to distinguish whether
a coerced voter complied the coercion request or cast her own choice of ballot using
some counter strategy. We let γ denote a property defining the goal of the coerced voter,
e.g. to vote for a specified candidate. The parties are an observer O, who can use public
data, nh honest voters and an additional voter under observation vobs , whose vote the
observer tries to guess

2In this thesis, we often use the terms “candidate” and “choice” interchangeably.
3Choices can also be preference lists of candidates, etc.

146 Chapter 6. Building Blocks; Verifiable E-Voting Protocols

Definition 39. Πevoting = 〈nv,Agent,Πh,cList,Γelc, fres〉 achieves δcr -coercion-resistance
if for all dictated coerced strategies πvco ∈Πh

v there exists a counter-strategy π̃vco s.t. for all
coercer programs πc :

• Pr[(πc ||π̃vco ||πv)(l) 7→ γ] is overwhelming.

• Pr[(πc ||πvco ||πv)(l) 7→ 1]−Pr[(πc ||π̃vco ||πv)(l) 7→ 1] is δcr -bounded,

with bounded and overwhelming defined in the security parameter. The first part
says that the voter is able to achieve her goal (e.g. vote for a specific candidate) and
the second part says that the coercer’s distinguishing power is bounded by δcr . This
level of coercion-resistance depends on several parameters especially the probability
distribution on the candidates. However this definition basically gives the advantage
in the probability of the coercer correctly pointing to the voter, when not following the
coercer’s instruction, compared to when she does.

Whereas this definition gives a level of coercion-resistance, it does not tell the full
story.

To give some insight on this let us consider the following example two different elec-
tion systems. System A outputs voter names and corresponding votes with probability
1
2 , completely breaking privacy, and otherwise it only outputs the election result. Ne-
glecting the information obtained from the election result we get δA = 1/2. In system B
the voter secretly gets a signed receipt of her vote with probability 1/2 and otherwise the
protocol works ideally. In this case a coerced voter can always cast her own choice and
claim that no receipt was received. A voter following the coercer’s instruction will with
probability 1/2 give the corresponding receipt, i.e. we again have δB = 1/2. In this case
we also get δB = 1/2 e.g. if the adversary always outputs “1” when getting a receipt.

However, the two systems are very different from the point of view of the voter: in
system A the coerced voter gets caught cheating with probability 1/2, whereas in system
B, the voter always has plausible deniability.

6.2.3 Privacy

With the above notation we define the δ-privacy as follows:

Definition 40 (δ-privacy [183]). Πevoting = 〈nv,Agent,Πh,cList,Γelc, fres〉 achievesδ-privacy
if

Pr[(πO ||πvobs (vO
0)||πv)(l) → 1]−Pr[(πO ||πvobs (vO

1)||πv)(l) → 1]

is δ-bounded as a function of the security parameter ℓ for all vote choices vO
0 and vO

1 of
the observed voter.

The value δ will depend on the chosen vote distribution.

6.2.4 Receipt-Freeness

Following [181], definition 39 also covers receipt-freeness. However, we again argue that
modelling some variants is useful. The following definition is based on a swap of πvco

and π̃vco in Definition 50, and models vote buyers who do not want to pay a “free lunch”
to vote sellers who follow their own goal. The voter’s goal γ, here can be to cast a speci-
fied vote or set of votes.

Definition 41 (Weak Vote Buying Resistance). For a given small pfl, S achieves δw vb-
coercion-resistance if for all dictated coerced strategies πvco ∈ VS there exists a counter-
strategy π̃vco ∈VS s.t. for all coercer programs πc ∈CS :

6.3. Verifiability in the Context of E-Voting Protocol 147

• Pr[(πc ||π̃vco ||πv)(l) 7→ γ] is overwhelming.

• Pr[(πc ||πvco ||πv)(l) 7→ 1]−Pr[(πc ||π̃vco ||πv)(l) 7→ 1] is δw vb-bounded and
Pr[(πc ||π̃vco ||πv)(l) 7→ 1] is pfl-bounded.

We here interpret outputting “1” as paying the vote seller and this definition bounds
how often an instruction-following vote seller gets paid by a vote-buyer (by δw vb +pfl),
but under the condition that a voter who casts another vote is only paid with a (very)
small probability pfl. This is a weakened vote-buyer model but interesting since a vote
buyer should avoid vote sellers going for a “free lunch”. If the probability of an hon-
est vote seller getting paid is low, it would help curb vote selling (even though the vote
buyer could increase the price and create a “vote selling lottery”). In this definition, it
also makes sense to drop the quantification over the coercer’s strategies to see the resis-
tance to vote buying for different vote choices.

6.3 Verifiability in the Context of E-Voting Protocol

Numerous problems with e-voting systems have been reported, according to documented
cases, in various countries, where votes could have been dropped or miscounted (see,
e.g., [95, 103, 176, 244, 261, 147, 243]). It is therefore crucial to ensure that, if the final
election result does not correspond to the voters’ votes, then this can be detected pub-
licly. This basic security property is called public end-to-end verifiability, and, ideally, it
should be guaranteed without having to trust any of the election authorities.

In order to establish a proper framework for defining the concept of verifiability, a
comprehensive investigation has been conducted into the development of an electronic
voting system with end-to-end verifiability security properties. End-to-end verifiability
features imply that if the election protocol passes a particular procedure, the published
election result is correct, i.e., corresponds to the votes cast by the voters, even if voting
devices and servers have programming flaws or are malicious.

A formal definition of a verifiable e-voting system is proposed by Benaloh in 1980 [36].
However, since then, various definitions have been proposed in the literature that cap-
ture an e-voting protocol’s verifiability. These definitions differ in many aspects, such as
underlying models (Computational or symbolic [182]) and assumptions. In [85] Cortier
et al. review all formal definitions of verifiability provided in the literature and place
them within the framework proposed by [182], resulting in a consistent approach of
verifiability. Additionally, we use this framework to analyze the verifiability of our pro-
tocols. We will briefly describe the concept and the notations in this section. We refer
to [85] for additional information.

6.3.1 Verifiability; Formal Definition

The definition of verifiability requires an agent J ∈Agent responsible for the verification
phase, which includes a variety of checks (depending on the protocol specification),
including verification of all zero-knowledge proofs (if any) and consideration of voter
complaints. In any protocol, the judge may be a regular protocol agent or an external
party provided with information by (possibly untrusted) protocol participants.

Informally, the KTV framework expresses that the protocolΠevoting is considered as a
verifiable scheme if J accepts a run only if the protocol’s goal is achieved. We emphasize
two subtle pointers linked to this interpretation before formally defining verifiability in

148 Chapter 6. Building Blocks; Verifiable E-Voting Protocols

the KTV framework. We emphasize that if the judge never accepts a run, these con-
ditions would be easily met in any protocol. As a result, the definition of verifiability
should include the conditions under which the aim must be achieved, and the judge
should accept runs.

Now we describe our customized definition of verifiability based on the generic ver-
ifiability definition proposed in [182]. Although we simplified the framework, it is still
sufficient for our setting.

We consider the goal ρ simply as a set of protocol runs for which “the announced
election result corresponds to the actual choices of the voters” where the description of
a run contains the description of the protocol, the adversary with which the protocol
runs, and the random coins used by these entities. Considering the terminology and
notation introduced in [36] we denote by

Pr
[

(π̂P∥πA)(ℓ) 7→ (J : accept)
]

the probability that process π, with security parameter ℓ produces a run which is ac-
cepted by J. Analogously, by

Pr
[

(π̂P∥πA)(ℓ) 7→ ¬γ | (J : accept)
]

we denote the probability that π produces a run which is not in ρ but nevertheless is
accepted byJ. The verifiability definition requires that the later probability be negligible
in term of the security parameter.

Definition 42 (Verifiability [182]). For e-voting protocol Πevoting with the J ∈Agent, and
φ = hon[Agent], let δ ∈ [0,1]. We say that a goal γ is guaranteed in Πevoting by φ and it is
δ-verifiable by the judge J if for all instance π= π̂P∥πA and for all PPT adversary A, the
following conditions are satisfied:

1. If φ = True in π then Pr
[
π(ℓ) 7→ (J : accept)

]
is overwhelming as a function of the

security parameter.

2. Pr[(π̂P∥πA)(ℓ) 7→¬γ, (J : accept)] is δ-bounded as a function of ℓ.

Expressing the goals as properties of a protocol is a powerful and flexible tool, which
allows capturing different aspects of verifiability in e-voting protocol as follows:

• In this case, the goal aims the individual verifiability, the voter also plays the role
of judge by running a private (designated verifier) rather than a public procedure.
As a concrete example for this case, we can mention a goal that includes all runs
in which the voters vote is counted as cast [230].

• By considering the goal that includes all runs in which the ballots shown on a bul-
letin board are counted correctly, the concept of verifiability capture the universal
verifiability [230].

• The KTV definition of verifiability captures the eligibility verifiability if the goal
includes those runs where only eligible voters vote at most once [240].

However, we can interpret the three definitions above into a single goal known as global
verifiability, which encompasses all runs in which the announced result exactly corre-
sponds to the votes cast by eligible voters.

6.4. Simulation-Based Security in E-Voting Protocol 149

For our subsequent verifiability analysis of protocols in 7.9.5 and 8.6.5, we instanti-
ate the verifiability definition with the goal γ(ϕ) proposed in [85]. This goal captures the
intuition of γ given before. The parameterϕ is a Boolean formula to describe which pro-
tocol participants are assumed honest. The goal γ(ϕ) is defined formally as described
next.

Definition 43 (Goal γ(ϕ) [85]). Let P be a voting protocol. Let Ih and Id denote the set of
honest and dishonest voters, respectively, in a given protocol run. Then, γ(ϕ) consists of
all those runs of the voting protocol P where either

• ϕ is false (e.g., the adversary corrupted a voter that is assumed to be honest), or

• ϕ holds true and there exist (valid) dishonest choices (ci)i∈Id such that the election
result equals (ci)i∈Ih∪Id (modulo permutation), where (ci)i∈Ih are the honest voters’
choices.

6.4 Simulation-Based Security in E-Voting Protocol

We analyze our protocol using the definition, notion, and notation defined in [46]. In
this paper, Bernhard et al. propose a new game-based definition of privacy called bPRIV.
Additionally, they identify new properties, strong consistency, and strong correctness,
which demonstrate that tallying does not leak sensitive information. They validate this
security notion by showing that bPRIV, strong consistency and correctness for voting
scheme implies its security in a simulation-based sense. We briefly present the neces-
sary notation and definition here and later conduct the security analysis for our proto-
col.

It’s worth noting that the primary reason we use this setting to establish our proto-
col’s privacy level is that our protocol heavily relies on the re-voting policy, and we need
to demonstrate that this re-voting policy has no effect on the ballot’s privacy.

6.4.1 bPRIV Property

Ballot privacy intuitively captures the idea that an e-voting protocol does not reveal in-
formation about votes cast beyond what is unavoidably leaked (e.g., the result of elec-
tion) during its execution. They formalize this idea in [46] by playing a game between
adversary and challenger in which the adversary attempts to differentiate between two
worlds. This game is formalized through experiments with the oracles listed below:

• Oboard oracle presents the adversary’s ability to see the publishable portion of the
ballot box, i.e. the bulletin board. Oracle returns the value Publish(BB). We con-
sider a single visible bulletin board to be a single bulletin board in our protocol. As
a result, we will not consult this oracle.

• OvoteLR, the left-right oracle, takes two plausible votes (vote0,vote1) for voter vid
to generate ballots ballot0 and ballot1 and then submit them to the bulletin board
(ballotβ to the bulletin board BBβ).

• Ocast oracle allows the adversary to cast ballot on behalf of any voter. In the origi-
nal definition, the ballot is published on the bulletin board as long as the ballot is
valid with respect to BBβ. However in our protocol, any ballot will be published
on the bulletin board.

150 Chapter 6. Building Blocks; Verifiable E-Voting Protocols

• Otally return the result of the election which in both worlds it is obtained by tally-
ingBB0 along with the additional information (e.g. proof of the tally-correctness).
In the first experiment, the adversary is provided by the real additional informa-
tion (related to the BB0) while in the second experiment, the additional informa-
tion is simulated.

The adversary is allowed to call oracles OvoteLR, Ocast, Oboard in any sequence and as
many times as he wishes, but the adversary can make a single call to Otally. After the
adversary receives the response from the oracle Otally, the adversary returns his guess,
β∗.

Definition 44. [46] Consider a voting scheme Πvoting for a set I of voter identities and
a result function fres. We say the scheme has ballot privacy if there exists an algorithm

Sim such that no efficient adversary can distinguish between games ExpbpriveA (1ℓ)[β= 0,1]
defined by the oracles in Figure 6.1.is negligible.

Additional Note. First, we emphasize that the bPRIV notion can be considered in Com-
mon reference string and random oracle models. Both models require a global setup
that initiates a set of public parameters through the Global.init and describes some algo-
rithms through Global.Setup that all parties, including adversary, can access. For exam-
ple, in CRS-model the algorithm GlobalSetUp.init generates a CRS, and in the random
oracle model, GlobalSetUp is a truly random function to which only oracle parties have
access.

Having the setup assumption enables us to generate a simulated setup consisting
of a simulator, Sim with additional powers that can be used to create reduction proofs.
For instance, in the CRS model, the simulated setup would consist of generating a sim-
ulated CRS with a trapdoor that enables the generation of valid-looking proofs for false
statements, whereas in the RO model, the simulator would program the oracle in such a
way that it outputs a specific value on some values of interest. It is self-evident that for
security reasons, the simulator outputs must be indistinguishable from a normal one to
a PPT adversary.

As stated in [46], requiring this global assumption is necessary since the security
level given by bPRIV would be too strong without it. Furthermore, the existence of a
simulator capable of falsifying the proof in the absence of a global setup would violate
the protocol’s tally uniqueness.

6.4.2 Strong Consistency

The privacy given by the bPRIV concept relies heavily on the fact that the election result
appears to be independent of the auxiliary data Π returned in the tally phase. The con-
tradiction concealed behind this point might be interpreted as follows: while res should
correspond to the expected result, it should not contain any sensitive data. To capture
this property, in [46] the authors propose a bPRIV companion definition called strong
consistency, which ensures that the result always corresponds to the result function ap-
plied to the votes and nothing else. It also mitigates the harm that an intentionally leaky
re-vote policy could implicitly cause while tallying. Informally, strong consistency pro-
hibits an adversary from embedding instructions in her ballots, resulting in the tallying
leaking information on the honest votes or preventing the validation of honestly gen-
erated ballots. They formalize the concept by requiring the existence of an “extraction”
algorithm, which with the help of the secret key outputs the underlying vote for each
valid ballot.

6.4. Simulation-Based Security in E-Voting Protocol 151

FIGURE 6.1: bPRIV experiment: ExpbPrivA (1ℓ)

Experiment steps:

1. The challenger run the set up algorithm:

(pk,sk) ← Setup(1ℓ)

2. The adversary interact with oracle O ∈ {OvoteLR,Ocast,Oboard,Otally}:

β∗ ←A⇌O(1ℓ,pk,ppelection)

3. The challenger choose the challenge bit: β
$←− {0,1}

Oracles:

• OvoteLR(id,vote0,vote1)

Let ballot0 =Vote[id,vote0]

ballot1 =Vote[id,vote1]

If Valid(BBβ,ballotβ) =⊥ return ⊥
Else BB0 ←BB0∥ballot0 and BB1 ←BB1∥ballot1

• Ocast(id,ballot)

If Valid(BBβ,ballot) =⊥ return ⊥
Else BB0 ←BB0∥ballot and BB1 ←BB1∥ballot

• Oboard

return Publish(BBβ)

• Otally :

β= 0 : β= 1 :

(res,πres) ←Tally(BB0,sk) (res,πres) ←Tally(BB0,sk)

π∗
resSimProof(BB1,res)

return (res,πres) return (res,π∗
res)

152 Chapter 6. Building Blocks; Verifiable E-Voting Protocols

FIGURE 6.2: ExpsConsA (1ℓ)

ExpsConsA (1ℓ)

(pk,sk) ← SetUp(1ℓ)

BB←A
(res;Π) ←Tally(sk,BB)

If res ̸= fres (Extract(sk;ballot1), . . . ,Extract(sk;ballotn))

Then return 1

Else return 0

Definition 45 (Strong Consistency [46]). A scheme Πvoting relative to a result function
fres has strong consistency if there exist

• an extraction algorithmExtract that takes as input a secret key sk and a ballot ballot
and outputs (i d , v) ∈ idSetcList or ⊥,

• a ballot validation algorithm ValidInd that takes as input the public key of the elec-
tion pk, a ballot ballot, and outputs accept or reject,

which satisfy the following conditions:

1. For any (pk,sk) that are in the image of Setup and for any (id,vote) ∈ idSet×cList if

ballot←Vote(pk,id,vote)

then Extract(sk,ballot) = (id,vote) with overwhelming probability.

2. For any (BB;ballot) ←A,Valid(BB;ballot) = accept impliesValidInd(ballot) = accept.

3. Consider an adversary A and the experiment ExpsConsA (1ℓ) shown in figure 6.2.

As stated in [46] if the result function does not use voter identifiers, as is the case
with our protocol, it merely requires the following:

fres
(
(id1,vote1), . . . , (idn ,voten)

)= fres
(
(idσ(1),vote1); . . . , (idσ(n),voten)

)
for some permutation σ, and so the Extract algorithm does not have to return the voter
identifier.

6.4.3 Strong Correctness

Following [46] the third property required for security analysis is strong correctness,
which reflects the strong independence between honestly created ballots and the bal-
lot box (and the voting scheme’s global setup). Informally, it protects the validity of an
honestly-cast ballot, even in the presence of an adversarial manufactured ballot box.

Definition 46 (Strong correctness [46]). Consider an adversary Athat takes as input pk
and has access to a global setup GlobalSetUp generated as expected. Then,

Pr
[

(id;vote;BB) ←A(pk);ballot←Vote(id,vote) | Valid(ballot,BB) ̸= accept
]< negl(ℓ)

6.4. Simulation-Based Security in E-Voting Protocol 153

where the probability is over the coins used by Kgen, A, and Vote algorithms.

In [46] it is proved that if a voting protocol with the result function fres is strongly
correct, strongly consistent, and ballot private, then it has a simulation-based privacy.

155

Chapter 7

Practical and Usable Coercion-Resistant
Remote E-Voting

Developing electronic voting systems for realistic elections that provide a min-
imum level of security and protect voters against malicious coercers is a dif-
ficult task. On top of this, making the system usable for non-skilled voters is
even more challenging. Numerous secure electronic voting systems have been
proposed to mitigate the possibility of coercion; however, many of them do so
at the expense of efficiency, usability, all of which are essential for real-world
elections.
This chapter aims to design a verifiable, voter-friendly and practical elec-
tronic voting system thst still achieves a good level of security and coercion-
resistance.

Contents
7.1 Research Question and Our Contribution . 156

7.2 Introduction . 156

7.3 A Brief Overview of NV12 . 158

7.4 Pin-Based JCJ E-Voting Protocol . 160

7.4.1 The Intuition Behind the PIN . 160

7.5 Protocol Description; Participants, Primitives and Framework 161

7.5.1 Protocol Participants . 161

7.5.2 Cryptographic Primitives . 162

7.5.3 Protocol Framework . 163

7.5.4 Protocol Instantiations . 165

7.6 Instantiation with Paillier Cryptosystem . 165

7.7 Instantiation with BGN cryptosystem . 171

7.8 Instantiation with Functional Encryption Scheme 175

7.9 Security Analysis . 179

7.9.1 Security Model . 179

7.9.2 Privacy Proof . 180

7.9.3 Strong Consistency Property . 183

7.9.4 Strong Correctness Property . 187

7.9.5 Verifiability . 188

7.10 Conclusion . 191

156 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

7.1 Research Question and Our Contribution

Our contribution in this chapter is to extend electronic e-voting protocols towards a pro-
tocol that tolerates a level of human errors without sacrificing privacy requirements. In
order to do this, we start by investigating the seminal coercion-resistant e-voting proto-
col by Juels, Catalano and Jakobsson proposed in [168], also known as the JCJ-protocol.
In JCJ-based protocols, the voter needs to handle cryptographic credentials and be able
to fake these in case of coercion.

From a security standpoint, we know that JCJ protocols rely on a long random secret
string to maintain a reasonable level of security. However, research shows even typ-
ing the password (secret credential) correctly, without typos, can be a daunting task for
many people, let alone storing the password in a safe place or memorizing it.

In a series of three papers, Neumann et al. [206, 207, 100] analyzed the usability of
JCJ. They developed and implemented a practical credential handling system utilizing
a smart card that unlocks the valid credential via a PIN code or faking the credential via
faking the PIN.

Numerous attacks and issues with the security of this protocol are demonstrated
in [98], most notably an attack on coercion-resistance caused by information leakage
during duplicate ballot removal. Another issue Neumann et al. raised but did not re-
solve is that PIN typos occur frequently and would invalidate the casting vote without
the voter being aware of it. Additionally, the smart card is a trusted component that a
coercer can withdraw to force abstention, thereby creating a single point of failure.

Our research develops a new protocol that overcomes these difficulties by allowing
credentials to be stored in traditional ways while being PIN-based and resistant to PIN
errors. The PIN is a short string of letters and numbers that the voter must memorize.
To protect voters from human error such as typos such as fat-finger-errors, we consider
a set of allowable PIN errors. Moreover, we design the protocol so that a voter’s ballot is
valid if it contains the exact PIN or a permitted PIN error but is invalid for all PINs. We
also instantiate our protocol by introducing proper cryptographic primitives to prove
our proposed protocol’s efficiency and usability.

Outline. This chapter is structured as follows. The outline of paper is as follows. Af-
ter an introduction in Section 7.2 we give an overview of the orignal NV12 scheme in
Section 7.3. Our improved protocol is presented in Section 7.4. In Sections 7.6, 7.7
and 7.8 we instantiate our protocol with three different cryptosystems, Paillier BGN and
Functional Encryption scheme. In Section 7.9 we analysis the privacy and verifiability of
our protocol. Finally we conclude in Section 7.10. We would like to emphasize that the
research presented in this chapter was previously published in (E-Vote-ID-2021)1 [98].

7.2 Introduction

One of the main threats in remote electronic voting is that they are inherently suscepti-
ble to coercion-attacks due to the lack of a voting booth. In their seminal paper, Juels,
Catalano and Jakobsson [168] gave a formal definition of coercion-resistance and fur-
ther devised a protocol (JCJ) satisfying this strong security property. To achieve this, JCJ
assumes a coercion-free setup phase where the voter gets a credential which is essen-
tially a cryptographic key. To cast a valid ballot this key needs to be entered correctly

1The International Conference for Electronic Voting

7.2. Introduction 157

together with the vote. In case of coercion, the voter can simply give a fake random
credential to the coercer and even cast a vote together with the coercer using this fake
credential – the corresponding vote will be removed in the tally process.

However, the tally process of weeding out the ballots with fake credentials and du-
plicates suffers from a quadratic complexity problem in the number of voters and cast
ballots. Several paper are devoted to reducing the tally complexity in JCJ, see e.g. [224,
17, 136, 245]; however, each with it drawbacks. Moreover, JCJ and similar constructions-
we consider them under the term JCJ-type-protocols, however also suffer from usability
deficits, see also [205]. Especially, the voter intrinsically cannot directly check if a cast
ballot is valid and will be counted [160].

Moreover, the handling and storing of long credentials is a notorious usability prob-
lem, getting even harder with a coercer present. The usability was analyzed by Neu-
mann et al. [206, 207, 100], which led to a protocol using smart cards for handling voter’s
credentials. The stored credential is combined with a PIN code to produce the full cre-
dential, compared with the credential stored by the authorities on the bulletin board.
In [98], we revisit this protocol and present several attacks on coercion-resistance and
verifiability, but also possible repairs.

Whereas the smart card provides a solution to the usability problem, it also comes
with strong trust assumptions and problems such as:

• Their security model assumes that the smart card is generally needs to be trusted.
A malicious card could e.g. use the wrong credential invalidating the cast ballot
without detection, and we cannot let the voter check if the ballot is correct without
introducing coercion threats.

• The coercer can take the smart card away from the voter to force abstention.

• It is more expensive, less flexible, and harder to update than a pure software solu-
tion.

• One of the attacks we found is that a coercer can use the smart card to cast ballots.
This not only endangers coerced voter’s real vote, but due to a leak of information
in the weeding phase, the coercer can also detect, with non-negligible probability,
whether the coerced voter has cast an independent ballot against his instructions.

We will present protocols that repair or at least diminish the attack probability of,
the last point’s attack probability by constructing new duplicate removal methods in
JCJ. Furthermore, the protocols constructed in this chapter are hardware-independent:
they could use a smart card or be implemented using a combination of a digitally stored
cryptographic length key and a PIN only known by the voter. The long credential could
be stored in several places – or hidden via steganography.

At ballot casting time, the software will take as input the digital key and the password
to form the credential submitted with the vote. Depending on the level of coercion, the
coerced voter can either fake the long credential or, for stronger levels of coercion, the
voter can reveal the digitally stored credential to the coercer but fake the PIN. Due to
our improved tally, the coercer will not know if he got faked credentials or PINs.

Another major problem with the original construction, already discussed as an open
problem in [206], is the high chance of users making a PIN typo error which will invali-
date the vote and remain undetected. Note that naively giving feedback on the correct-
ness of the PIN is not possible for coercion-resistance as it would allow the coercer to
check whether he got a fake PIN or not. Instead, we will define a set of allowed PIN errors

158 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

(e.g. chosen by the election administrator), and we will consider a ballot as valid both
if it has a correct PIN or an allowed PIN error, but invalid for other PINs. We construct
protocols that at the tally time secretly check whether a given PIN is in the set of allowed
PINs and will sort out invalid ballots. The protocols can accommodate general PIN error
policies, however Wiseman et al. [260] studied usual errors in PIN entries. Two frequent
errors are transposition errors (i.e. entering “2134“ instead of “1234”) and wrong digit
number errors (i.e. entering “1235“ instead of “1234”). However, correcting for both of
these errors is however problematic, as we will see since the set of independent PINs
becomes small.

7.3 A Brief Overview of NV12

Following the proposal of the JCJ voting scheme in 2005, it has gained much attraction.
Due to JCJ’s security properties, particularly its coercion-resistance properties, intensive
research has been conducted to improve the JCJ from theoretical and practical points of
view, such as the Civitas scheme [80]. Although Civitas improved the JCJ scheme by
developing its instantiation of cryptographic components and implementation, it has
practical and usability shortcomings. To overcome these drawbacks in a series of three
papers Neumann et al. [206, 207, 100] carried out a usability analysis of JCJ. They de-
veloped and implemented a practical credential handling system (NV12) based on a
smart card that unlocks the valid credential via a PIN number, while also faking the PIN.
In [207], a few modifications were made to prevent side-channel attacks, an efficiency
analysis was done, and finally [100], presented a prototype implementation and effi-
ciency.

In [98] we demonstrate many attacks and issues with the protocol’s security, most
notably a coercion-resistance attack caused by information leakage caused by the re-
moval of duplicate votes. Moreover they discuss how to repair these issues. These short-
comings include the Benaloh challenge problem, Brute force attack, Leaky duplicate re-
moval, Fake election identifier and Smart card removal. Finally, to motivate our protocol
in this section, we briefly describe two attacks that our protocol will repair.

Leaky duplicate removal , This is an attack on coercion-resistance but can also be an
attack on verifiability. In the simplest form, the coercer uses the smart card to cast a vote
with some trial PIN. The coercer wants to determine if this trial PIN is correct. According
to the protocol the voter will cast her true vote using the correct PIN at some secret
point during the voting phase. However, in the tally phase, credentials are weeded using
plaintext equivalence tests (PETs) of the encrypted credentials directly on the submitted
ballots.2 If the coercer now sees an equivalence with his submitted trial ballot, he can
guess that it was the voter casting the other ballot, probably with the correct PIN. Thus
he has determined the correct PIN and that the voter defied his instructions in one go.
To boost the attack he can simply try several PINs.3 In standard JCJ, such an attack
would not work since the submitted trial credential would have the same probability

2In general, this is not good for coercion-resistance since a coercer might detect a voter not following instructions
across elections, see [160].

3Note that the coercer does not have to let the voter know that he follows this strategy. The voter only knows that
the coercer has access to the card for some short time. Based on this, she could also decide not to cast her true vote
at all, but then the protocol could not really be called coercion-resistant since the coercer has a very efficient strategy
to force abstention.

7.3. A Brief Overview of NV12 159

of being identical to the coerced voter’s credential as for it to be identical to any other
voter’s credential. Furthermore, the probability would be negligible.

A local adversary getting access to the smart card could also follow this strategy to
try to know the PIN and cast valid votes. The voter might actually detect this if the voter
checks the weeding on BB and sees a duplicate of his own vote (note this was also
mentioned in [223]), but the voter is not instructed to do this in the protocol. Thus the
PIN is not protecting against unauthorized use of the smart card.

It is actually surprisingly hard to make a tally protocol that does not leak information
to prevent this attack. The original JCJ protocol relies on guessing the real full credential
can only happen with a negligible chance. A first repair could be to mix the ballots
before weeding but after verifying the Zero-Knowledge proofs. This makes it difficult
to implement certain policies, like the last valid vote counts; however, it fits nicely with
the policy that a random selection from the valid votes count. Unfortunately, this does
not prevent the attack. The coercer could mark his ballot by casting it a certain number
of times which is likely to be unique. He then checks if he sees this number of duplicates
or one more. Even if mix between each duplicate removal, which would be horrible from
an efficiency perspective, we do not get a leak-free tally. The distribution of time until a
PET reveals a duplicate will depend on whether the PIN was correct or not. Especially
the coercer could cast a lot of votes with the same trial PIN, which would make detecting
this more visible. There are other methods to limit the information leak in the tally
which we will present below.

The protocol we will present in this chapter does not leak information about the
number of duplicates per voter and has linear tally complexity (compared to the quadratic
in JCJ) but has an obfuscated form of participation privacy.

Smart card removal. An obvious forced abstention attack is that the coercer simply de-
mand to hold the smart card during the election period. This problem seems quite in-
herent to the smart card approach. We could let the voter hold several smart cards.
However, holding several cards would be physical evidence which a voter with a local
coercer probably would not want to risk. Furthermore, the number of cards allowed per
voter could necessarily not be bounded. If each voter were allowed to hold e.g. 5 cards,
the coercer would simply ask for five cards. If this is troublesome it seems better to leave
the smart card only approach and allow the voter to also hold the credential as a piece of
data as in standard JCJ. This can more easily be hidden (steganography could be an op-
tion here) even though theoretically this also has problems [236]. Our protocols below
can be implemented with or without smart cards.

Additionally to the above attacks, some problems with the protocol do not fall under
the category of attacks. The main usability and verifiability problem with the protocol
is that PIN entry is error-prone, as was already stressed in the papers by Neumann et al.
An obvious solution is to have a PIN check, e.g. a checksum check. However, this would
mean that only certain PINs are valid PINs, and for a voter to present a fake PIN to a
coercer, she would first have to prepare a valid fake PIN, which is less usable.

An option with higher usability is to have a policy of allowed PIN errors and accept
full credentials corresponding to the PIN being entered with allowed errors. This is the
approach we will essentially follow in this paper; however, our solutions will also work
for checksum checks.

If JCJ had a method of verifying the cast votes, we would also be able to detect such
PIN errors. Such a verification mechanism was suggested in [160] using the Selene ap-
proach. However, this check can only be made after vote casting has ended; thus too

160 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

late to update a PIN typo.
Another problem is the assumption that the smart card is trustworthy. This does

not seem like a valid assumption, at least for important elections. The smart card could
simply use the wrong credential in a ballot, invalidating the vote. Further, this cannot be
detected since the smart card is the only credential holder. At least the PIN encryption
could be Benaloh tested, but not the credential. Furthermore, the smart card reader is
also trusted. However, this might not be reasonable in practice. As an example, if the
middleware on the reader allows the voter’s computer or the network to display mes-
sages on the screen, e.g., to say it is waiting for a connection, then it could e.g., try to
display fake hash values. A corrupted smart card could also easily break privacy by us-
ing encryption as a subliminal channel for vote choice. The smart card can also be seen
as a single point of failure in light of this. We will thus focus on hardware-independent
protocols.

7.4 Pin-Based JCJ E-Voting Protocol

To overcome the unsatisfying state-of-affairs described before in [98] we propose a prac-
tical and usable e-voting scheme, PIN-JCJ that satisfies verifiability, and coercion-resistance
properties.

Compared to the previous electronic voting technique, our protocol has two signifi-
cant innovations. First, it is a hardware-independent protocol, as we replace the smart
card with the voter’s supporting device, which can be easily duplicated. Second, we
construct it in such a way that some human error is tolerated.

7.4.1 The Intuition Behind the PIN

In a nutshell, in our voting scenario the voter has two keys: a long key (a.k.a. long cre-
dential) which is stored on her supporting device (smart card or another device) and a
short key, namely PIN, which should be memorized by the voter. Our goal is to design a
voting protocol that tolerates some level of human error. In other words, the validity of
a ballot and the result of the decryption algorithm tolerate human errors, such as typos
(fat finger errors) regarding the PIN. The naive solution to do this is for each PIN, “a” we
generate an ErrorLista , and in the tally phase, to verify the legitimacy of the ballot, check
whether the input PIN is in the set of error list or not.

pin = a : ErrorLista = {a1 = a, a2, . . . , ak } ,
∣∣a∣∣= ∣∣ai

∣∣ (7.1)

This method has several significant privacy and efficiency issues, and to overcome these
drawbacks, we propose the following new approach:

Our approach is based on polynomial evaluation, which allows us to determine whether
or not a PIN is legitimate efficiently. This is accomplished by generating a list of ap-
proved PINs based on the user’s PIN a and the election policy. From now on, we refer
to this list as an Error List. We emphasize that to have a constant degree polynomial for
all voters, the error list must have the same number of PINs, which might contain du-
plicates. From this, we generate the pin-Polynomial, as follows, which has all ErrorLista

members as its root:

pin-polynomial: polypin(x) =
k∏

i=1
(x −ai) =

k∑
i=0

pi xi (7.2)

7.5. Protocol Description; Participants, Primitives and Framework 161

In order to check the validity of the PIN typed by the voter, it is then sufficient to check
whether the polynomial value on this pin is equal to zero or not.4

It is obvious that this polynomial must be kept secret at all times to prevent the co-
ercer from recovering the PIN by factorizing it. As a result, we must operate with en-
crypted polynomials, which brings us to our next challenge: polynomial evaluation un-
der this encryption. Namely, given the polynomial encryption as its encrypted coeffi-
cient,

polypin(x) =
k∑

i=0
pi xi ⇒Enc(polypin)(x) =

k∑
i=0

cpi xi ,

as well as a ciphertext CTpin =Enc(â) that is the encryption of the entered PIN, we need
to compute Enc(polypin(â)).

Therefore in the next step, we have to find a way to prove (publicly) that the in-
dividual voter’s polynomial is correctly evaluated without endangering the coercion-
resistance.

Further, while solving this problem, we will also focus on efficient protocols to ob-
tain a practical JCJ scheme with (almost) linear tally time in the number of voters. To
obtain this we need to sacrifice perfect privacy. We only have participation privacy in
the first scheme by obfuscation inspired by [136, 180]. Here ballots are submitted with
an ID, and homomorphic Paillier encryption can then be used to evaluate the polyno-
mial. However everybody, e.g. an independent authority, can cast votes labeled with
ID, which will later be discarded as invalid. Thus the actual participation of the voter is
obfuscated, and the voter can deny having participated in the election. Optionally, we
could also follow the JCJ alternative method in [136] to achieve perfect privacy; how-
ever, the cost will be that the voters twice have to defy the coercer and interact with the
voting system. In the second scheme using BGN encryption, the information leak from
duplicate removal will not be negligible but bounded, and this scheme does not satisfy
linear tally efficiency.

The next section will present the protocol description by introducing the crypto-
graphic building blocks and their algorithm. Also, for simplicity, we describe the pro-
tocol with a single trusted party, but it is possible to run this protocol distributively.
We will also not specify all parts of the distributed registration phase and the Benaloh
challenges; this can be implemented as in the NV12 scheme with some obvious modifi-
cations and the repairs presented in [98].

7.5 Protocol Description; Participants, Primitives and Framework

We now present the PIN-JCJ e-voting protocol on the conceptual level. In section 7.5.4,
we will then instantiate our protocol by introducing concrete cryptographic primitives
to demonstrate the efficiency and usability of the protocol.

7.5.1 Protocol Participants

The PIN-JCJ protocol is run among the following participants: Election authority in
charge of running elections and declaring elections. Election trustees are in charge of
the tallying process, and they are the only parties in possession of the election secret

4Note there is a small problem here since we are in composite order groups and the polynomials might have more
roots than the allowed PINs. However, the probability in general is negligible.

162 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

keys. nv voters, each having their own voting supporting device,vsd. A set of supervised
registrars administrate the electoral register and provide the voters with their creden-
tials. A set of mix-servers (mix-net) and an append-only bulletin board BB.

We also presume that all parties communicate with one another via authenticated
channels. An authenticated channel from each voter to the bulletin board allows the
voter to post data on the bulletin board, for example, cast her ballot, or file a complaint.
To describe the PIN-JCJ protocol, we will first go through the cryptographic primitives
that are employed in the scheme. We separate two sets of primitives for instantiation:
those that use standard public encryption schemes and those that use the public func-
tional encryption scheme.

7.5.2 Cryptographic Primitives

We use the following cryptographic primitives:

• An IND-CPA-secure public-key encryption scheme: Πpke = (Kgen,Enc,Dec). Our
protocol requires performing a polynomial evaluation on encrypted data; namely,
the underlying public-key cryptosystem must support re-encryption. To this end,
we consider three approaches: A public-key encryption scheme that allows mul-
tiplication on the ciphertext or a homomorphic public-key encryption scheme or
functional encryption scheme. We detail the instantiation of the protocol with
these three cryptosystems in section 7.5.4. However, for the time being, we are
only considering a public-key cryptosystem with IND-CPA-secure property as the
protocol’s security and privacy are dependent upon it.

Additional Note. As mentioned above, the underlying public-key cryptosystem
needs to have an extra algorithm, as a re-encryption algorithm. On the other hand,
for security analysis, we require the cryptosystem to be non-malleable, which con-
tradicts the re-encryption requirement. We employ a public-key cryptosystem
with a re-encryption algorithm to address this issue, w, but we require that each
ciphertext contain a zero-knowledge proof of knowledge. We refer to [44] for more
detail on the CCA-secure cryptosystem for e-voting protocol.

• Non-interactive Zero-Knowledge proof: For the protocol’s verifiability, we use a
non-interactive zero-knowledge proof system to prove the correctness and plain-
text knowledge for all encrypted data, such as “Proof of Plaintext Knowledge” and
“Proof of Decryption Validity.” We may utilize either a zero-knowledge proof sys-
tem or a witness-indistinguishable proof system for this aim. Formally we will use
the following proofs in our protocol:

1. A proof of correct key generation, i.e., a non-interactive zero-knowledge proof
(NIZKP) πKgen for proving the correctness of a public key pk w.r.t. Πpke. The
underlying relation RKeyGen is(

x = pk, w = (random,sk)
) ∈ RKeyGen ⇔ (pk,sk) =Kgen(random). (7.3)

2. The proof of correct encryption πEnc, i.e., a NIZK proof of knowledge for prov-
ing the correctness of a ciphertext ct w.r.t. election key pk, voter public key
pkv.

7.5. Protocol Description; Participants, Primitives and Framework 163

3. A proof of shuffle, πShuffle with respect to the cryptosystem Πpke, i.e., NIZK
proof of knowledge for the following relation Rshuffle:(

x = ((cti)n
i=1, (ct′i)n

i=1), w = ((ri)n
i=1,σ)

) ∈ Rshuffle

⇕(
σ : [n] → [n] bijective

)∧ (∀i ∈ [n] : ct′i =ReEnc(pk,ctσ(i);ri)
)
.

(7.4)

In other words, the public statement of a proof of shuffle consists of two ci-
phertext vectors (cti)n

i=1 and (ct′i)n
i=1 of the same size, and if the prover’s out-

put is valid, then this implies that the prover knows random coins (ri)n
i=1 and

a permutation σ over [n] such that ct′i is a re-encryption of ctσ(i) (using ran-
domness ri).

4. A proof of correct decryption πDec with respect to Πpke, i.e., a NIZK for the fol-
lowing relation Rdec:(

x = (pk,m,ct), w = sk
) ∈ Rdec

⇕(
m =Dec(sk,ct)

)∧ (pk,sk) ←Πpke.Kgen.

(7.5)

For all the above relations we can use either a zero-knowledge proof system
or a witness-indistinguishable proof system for this purpose.

• EUF-CMA-secure signature scheme: We assume that every message encrypted
by a protocol participant contains some election parameters such as the election
identifier, and to avoid the heavy notation, we use the following convention: Sign-
ing some message m implies that the signature is computed on the tuple (m;pp)
where the second components are public election parameters including an elec-
tion identifier.

7.5.3 Protocol Framework

A protocol run consists of the following phases:

• Setup Phase. This procedure is carried out in the same manner as a standard e-
voting protocol. The election authority sets up the election, establishes all the poli-
cies, such as re-voting policy and the type of error that the protocol will tolerate,
and publishes details about the ballot design and other procedures. For example
the re-vote policy specifies whether voters can cast only one ballot or many bal-
lots. Furthermore, which ballot will be counted as the voter vote in the tally phase
in the latter case.

Then the election trustees distributively generate the election key through dis-
tributed threshold secret sharing and publish the public part of it on the bulletin
board, together with proof of data correctness.

• Registration Phase. During this phase, the voter, v, personally consults a so-called
supervised registrar (SR). This authority verifies that the voter is not being coerced
directly and then generates a unique credential. This credential is then split into
two parts: the long credential and the short credential, also referred to as the PIN.5

5Note that users are generally not good at choosing random PINs, as revealed in PIN frequency analyses. Thus, we
recommend that the PIN be generated uniformly at random and not chosen by the voter.

164 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

Following that, the supervised registration authority develops the PIN’s error list(as
in 7.1) according to the election policy and determines the pin polynomial (as de-
fined in 7.2). Finally, the voter’s long credential and encryption of the pin-polynomial
(encryption of polynomial coefficients) are transmitted to (stored on) the voter’s
supporting device. Notably, the PIN is not stored in the voting device or on the
bulletin board, and it is necessary to be memorized by the voter .Along with the
voter credential, the registrar provides proof that satisfies only voter, v, that all as-
sociated data was generated correctly, whether published on the bulletin board or
stored on the voter’s device.

• Voting Phase. In this phase, the voter device asks the voter to enter her PIN, â and
her preferred choice, vote. Then it generates the ballot of the form:

ballot= (CTcrd,CTvote,πballot) :
CTcrd =Enc(voterCredential) = (CT1,CT2),

CTvote =Enc(vote)

(7.6)

together with some election’s public parameters, such as the election identifier. In
the ballot form, CT1 and CT2 denote the encryption of voter long credential and
the pin she entered, with respect to the election public key, respectively. More-
over, πballot denotes the proof of the ciphertexts’ well-formedness, which consists
of proof of plaintext knowledge of both the credential and vote.. In the next step,
voter can choose to either audit her ballot her vsd and conduct the Benaloh Chal-
lenge [35] procedure to ensure that her ballot has the correct vote and pin or to
submit it.

Device Auditing: If the voter wishes to audit option, the smart card com-
mits to encryption of the ballot by displaying hash

(
ballot; {random}

)
. The voter

notes down this hash, and if the encryption is challenged, the smart card re-
leases all the randomness numbers {random} to the voter’s computer. The
voter can verify the hash indeed was consistent with the vote choice via a
third device. This challenging procedure can be reiterated.

Ballot Casting: When voters get sufficient confidence in the honesty of their
device, they sign the ballot 7.6 and submits it via an authentic anonymous
channel to the bulletin board.

• Tally Phase. This includes several steps. First, any exact duplicate ballots and
ballots with incorrect proofs or signatures are removed. The teller should then
detect duplicate ballots from a single voter, weeding the duplicates while ensuring
the remaining ballot matches the valid pin (if existing). The weeding step is done
according to the re-vote policy of the election. For example, suppose the re-vote
policy specifies that each voter’s last (according to the time-line) valid ballot must
be counted in the tally phase. In that case, this step must ensure that the last valid
ballot remains on the bulletin board and the rest are removed.

The several mix-net servers carry out the following phase: each mix-net receives
a list of ballots as input, re-encrypts each ballot, and then performs a secret per-
mutation on the re-encrypted list to produce the new list. Finally, the decryption
trustees process the output of the last mix-net to compute the election outcome.

7.6. Instantiation with Paillier Cryptosystem 165

We emphasize that the in-charge parties must provide proof of correctness in all
of the preceding procedures.

• Public Verification Phase. In this phase, every participant, including the voters or
external observers, can verify the correctness of the previous phases, particularly
the correctness of all NIZKPs published during the setup, registration, voting, and
tallying phase.

In section 7.5.4, we propose three instantiation of our protocol. The main differ-
ence in these instantiations is how we perform the tally phase.

7.5.4 Protocol Instantiations

This section provides three instantiations of the generic PIN-JCJ protocol with concrete
cryptographic primitives. While all three institutions adhere to the protocol frame-
work 7.5.3, we emphasize that they differ in some steps, particularly the tally phase.

We will explain only the basic building blocks and their algorithm and suppress some
details about ballot integrity and non-malleability from the zero-knowledge proofs, e.g.
the inclusion of election identifiers and the correct form of the Fiat-Shamir transforma-
tions. Also, for simplicity, we describe the protocol with a single election trustee, but it is
possible to run this protocol distributively. Finally, we also will not specify all parts of the
distributed registration phase and the Benaloh challenges, this can; be implemented as
in the NV12 scheme with some obvious modifications and with the repairs mentioned
in [98].

Before proceeding, we will establish some specific notations for this chapter. First,
we refer to the ct[m] as the cipher-text containing the message m, i.e. ct= Enc(m), and
by ballot[crd,vote], we mean a ballot that contains both the crd’s and the vote’s encryp-
tion.

7.6 Instantiation with Paillier Cryptosystem

The first instantiation relies on the standard threshold variant Paillier public-key cryp-
tosystem[210] which its security is based on the hardness of the decisional composite
residuosity assumption 3.

The main reason for choosing Paillier [216] instead of exponential ElGamal [150]
(as in the original JCJ protocol) is that its plaintext-homomorphic property (see 2.3)
allows us to evaluate the polynomial without decrypting the coefficients of the poly-
nomials. Further, it allows an efficient multi-party computation protocol to compare
and (hence sort) ciphertexts by plaintext values without decryption [192]. Furthermore,
this algorithm is linear in the bit length, i.e. logarithmic in the security parameter, and
can be made public verifiable [184]. Using this technique allows us to empower this
instantiation to secure and efficient the weeding process, but at the cost of all ballots
submitted with a voter identifier. Thus, obfuscating votes [136, 180] must also to be cast
to achieve participation privacy.

We also use the secure multi-party computation protocol MPCmi n to compare and
(hence sort) ciphertexts by plaintext values without decryption introduced by Lipmaa
and Toft [192] which secretly evaluates equality of two secret integers. In addition, the
MPC protocol that is used in tally-hiding e-voting protocol such as Ordinos [184]. We
refer to [184] for the public verifiable multi-party computation details.

166 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

Additional Note. We consider the protocol in the context of a single trusted party,
namely a single election trustee running the key generation algorithm, rather than dis-
tributing trust among a group of election trustees; however, it can be implemented in
a distributed fashion, as was already mentioned above, using the methods introduced
in [210, 152]. Furthermore we emphasize that in the Paillier cryptosystem, proof of the
correct key generation, πKgen, is actually the bi-primary test of the modulus n. Numer-
ous methods for bi-primary testing have been proposed in single- and multi-party set-
tings, including the method introduced by Boneh and Franklin in [52]. Additionally,
Vitto [253] introduces a protocol for efficiently generating certificates of semi-primality,
which enables us to generate distributively semi-primes with unknown factorization.

For the proof of knowledge of the vote and the well-formedness of the ballot, we
use a non-interactive version of the sigma protocol for Paillier encryption scheme 3.3.
Finally, we can use any EUF-CMA-secure signature scheme.

The detail of the protocol is as follows:

• Set Up Phase: The election authority run the key generation algorithm of Paillier
encryption scheme, ΠPai.Kgen to generate the pair of keys and publish them on
the bulletin board along with the election parameter:

keyelection = (PK,SK);PK= (
n = pq ,G, g ,ppelection

)
,SK= (p, q)

• Registration Phase: At the beginning of this phase, an empty list of voters cre-
dential, VoterCredentialList is initiated. Then for voter vid the registrar, does the
following steps:

1. Pick a random number, crd
$←−Zn . according to the uniform distribution such

that crd ∉VoterCredentialList. For sake of privacy we can store a hash value of
the credential in this list rather than the credential. Append the new creden-
tial crd to the VoterCredentialList and store it on the voter’s device. We refer to
crd as the voter’s long credential.

2. Pick randomly a number a
$←− PinSpace and declare it to the voter vid. We refer

to a as voter’s short credential or voter’s pin.

3. A registrar, based on the error-tolerance policy of the election, compute the
set ErrorLista as in (7.1)

polyid,a =
k∏

i=1
(x −crd−ai) =

k∑
i=0

pi xi (7.7)

We refer to the set ErrorLista as the error list for pin = a and polyid,a the pin-
polynomial for voter id. If the voter’s id is clear from the context we will omit
the index id.

4. Encrypt the polynomial with respect to the election public key. We stress that
by encryption of the polynomial we mean the encryption of its coefficients,
throughout this chapter. Namely, we consider the encryption as a vector with
lent k +1.

Enc(poly(id,a)) = C⃗P= (cp0, . . . ,cpk) : cpi =Enc(pi) for i = 0, . . .k. (7.8)

7.6. Instantiation with Paillier Cryptosystem 167

5. Provide a proof πpoly for the following relation:

Rpoly =
{

(x, w), x = (
id, a,crd,ErrorLista , C⃗P= (cpi)i∈[k]

)
w = (

(randomi)i∈[k]
)

:
cpi =Enc(PK, pi ;randomi) = g pi · randomi

n ,

polyid,a =
k∑

i=0
pi xi =

k∏
i=0

(x −crd−ai),

i = 1, . . . ,k : ai ∈ErrorList
}

(7.9)

The registrant presents πpoly the voter as proof of the polynomial’s validity
(well-formedness and correctness). This proof is done in a designated way.

6. Store (crd,CP) on voter device.

7. Publish vid :
(
CP= (cp0, . . . ,cpk),Enc(crd)

)
on bulletin board.

• Casting Ballot: In this step, every voter vi decides to abstain from the election
or vote for some candidate. In the latter scenario, the voter indicates her choice
after entering her PIN, â to her vsd device. Then the vsd encrypts the vote, the
voter credential, and the entered â, under the public key of the election (Paillier
public key) using random coins random j , resulting in the following ciphertexts:
CP∗ = (cp∗0 , . . . ,cp∗k),ct[vote] and ct[crd].

i ∈ [k] : cp∗i = cp(â+crd)i

i · random∗
i

n = (g pi · randomn
i)(â+crd)i · random∗

i
n

= (g pi ·(â+crd)i · (random(â+crd)i

i · random∗
i

)n

=Enc(PK, pi · (â +crd)i)

ct[vote] =Enc(PK,vote;random) = g vote · randomn ,

ct[crd] =Enc(PK,crd) = g crd · random′n

(7.10)

As previously stated, the voter’s vsd contains the voter’s long credential (plain) but
not the polynomial. In fact it only has the encryption of the polynomial. However,
because of the homomorphic property of the Paillier encryption scheme, the vsd
is capable of performing a blind multiplication of the polynomial coefficient with
the (crd+ â).

In the next step, vsd provides a proof, πballot, (also proof of knowledge), ensures

that everything was generated honestly, for relation Rpaillier
ballot

.

Rpaillier
ballot

=
{

(x, w), x = (
ct[vote],ct[crd], C⃗P= (cpi)i∈[k], C⃗P

∗ = (cp∗i)i∈[k]
)

w = (
vote,randomvote, â,crd,randomcrd, {random∗

i }i∈[k]
)

:
ct[vote] = g vote · randomn ,vote ∈ cList,
ct[crd] = g crd · random′n ,

i = 1, . . . ,k : cp∗i = cp(crd+â)i · random∗
i

n
}

(7.11)

This proof can be implemented efficiently using Sigma protocols and relies on the
DDH assumption and it can be made non-interactive using the strong Fiat-Shamir
heuristic.

168 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

At the end of this phase, voter signs her ballot of the following form:

ballotvid = (ct[crd],ct[vote], C⃗P∗ = (cp∗1 , . . . ,cp∗k),πballot) (7.12)

and submits it to the bulletin board.

Re-Vote Policy In this instantiation, each voter is permitted to submit multiple
ballots, and in the tally phase, one of the valid ballots is randomly picked and
counted.

Additional Note. We stress that we do not describe some steps in detail here, such
as the “Benaloh challenge” to audit the voter’s supporting device. Furthermore, in
this instantiation, we use the obfuscate method introduced in [136, 180] to protect
the voter against the coercer who compels a voter not to vote (abstain from voting)
i.e. a separate (distributed) authority will submit dummy ballots on behalf of all
voters. Since this authority does not know the long credential all of these dummy
ballots will be invalid but will obfuscate whether a specific voter did vote or not.

• Tally Phase: Using the Paillier encryption scheme allows us to efficiently sort the
ciphertexts based on plaintext values without decrypting them using MPC among
the Tally Tellers (see [192] for details). Additionally, this algorithm can be imple-
mented in a multi-party computation, strengthen the elections. In our protocol,
we take advantage of this multi-party computation to sort the encryption of poly-
nomial evaluation.

We refer by MPCmin the algorithm that takes as input the ciphertexts:

ct1 =Enc(m1),ct2 =Enc(m2), . . . ,ctt =Enc(mq),

and outputs the index i∗ such that

cti∗ =Enc(mi∗) : mi∗ = min{m1, . . . ,mt }.

We use this algorithm in the Tally phase.

1. Ballot Validity Check: We remove exact ballot duplicates and all ballots with
invalid proof and the signature in the first step. In the next step, we need
to remove extra ballots for each voter, making sure a valid ballot is kept if
existing.

2. Weeding: Since each voter will be associated with possibly more than one bal-
lot, we need to weed them in a way that at least one of the ballots associated
with the valid credential and pin will remain - if existing.

Assume the voter vid casts q ballots, each includes choices voteid,i :

vid : ballotid,1 :
(
C⃗P

∗
1 ,ct[voteid,1]

)
, . . . ,ballotid,q

(
C⃗P

∗
q ,ct[voteid,q]

)
each contains C⃗P

∗
t =

(
cp∗(t ,1), . . . ,cp∗(t ,k)

)
and the pin ât .

7.6. Instantiation with Paillier Cryptosystem 169

We homomorphically combine the public ciphertext cp0 with the submitted
encryptions to obtain an encrypted polynomial evaluation for each ballot:

For t = 1, . . . q :

cp0 ·
k∏

j=1
cp∗t , j = g p0 · randomn

0 ·
k∏

i=0
g pi ·(ât+crd)i · randomn

i

= g
∑k

i=0 pi (crd+ât)i · random
=Enc(PK,polyid,a(crd+ ât))

(7.13)

Note that the above ciphertext would be the encryption of zero if the ballot
has a valid credential and pin.

Enc(PK,0) ⇐⇒ ât ∈ErrorLista

We now verifiably mix the pairs:

ctt [polyid,a(ât +crd)],ct[voteid,t]

and run the MPCmin protocol:

MPCmin

(
ctσ(j)[polyid,a(âσ j +crd)]

)
j∈[q]

7→ ct[polyid,a(âm +crd)] (7.14)

which securely outputs the minimum value:

∀t = 1, . . . , q : polyid,a(crd+ âm) ≤ polyid(crd+ ât),

We keep this ciphertext and the corresponding encrypted vote and discard
the rest. Note that MPCmin selects a valid ballots having polyid,a(âm +crd) = 0
if it exists.6

3. Ballot Anonymization: We observe that at this stage, there is only one ballot
left on the bulletin board for each voter, which is composed of two compo-
nents:

vid : ˜ballotid,m = (c̃tid, c̃t′id) :
c̃tid = ctid[poly] =Enc(polyid,a(âm +crd)),

c̃t′id = ctid[voteid,m].

In fact, ballotid,m is the output of the MPCmi n protocol. To avoid the heavy
notation, we will no longer use the index m and we refer to ballotid,m by
ballotid.

Two steps must be completed in order to anonymize the ballots:

Step 1. Raise the first component to the power r1 and re-encrypt the sec-
ond component:

c̃tid 7→ ctid = c̃tr1
id =Enc

(
polyid,a(âm +crd)r1

)
(7.15)

6This will give a random correct vote. The “Last valid vote counts” policy can be implemented by adding the
received order to the plaintext.

170 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

and provide a proof πrandomization for the relation Rrandomization:

Rrandomization =
{

(x, w), x = (˜ballot,ballot), w = r1 :
˜ballot= (c̃t,ct′),ballot= (ct,ct′),

ct= c̃tr1} (7.16)

We multiplicatively randomize the polynomial evaluation to avoid coer-
cion side channels, but still be able to determine if a ballot was valid by
checking if the value is zero. At the end of this step, we obtain the follow-
ing list, which includes a single ballot for each voter:

L1 =
[(
ctid = ct[polyid,a(âid+crdid)],ct′id = ct[voteid]

)]
id∈idSet

Step 2. In this step first we delete the voter identifier. Then we insert
the list L1 into a verifiable parallel mix-net to apply the re-encryption and
permutation procedure on the list L1. It is required that each mix-net
provides proof of shuffle, πShuffle, for the relation, Rshuffle (8.2). At the end
of this step we obtain (L2,πShuffle) where:

L2 =
[

(ctσ(id)[polyσ(id),a(âσ(id) +crdσ(id))
random],ct′[voteσ(id)])

]
id∈idSet

4. Final PIN-Credential Check: In this step, first we decrypt the first component
of each ballot:

ctid[polyσ(id),a(âσ(id) +crdσ(id))
random]

to retrieve the polynomial evaluation. All ballots with non-zero polynomial
evaluation will be discarded.

5. Vote Extraction: Decrypt the remaining vote ciphertexts and provide proof of
decryption 7.5.

6. Result Computation: Obtain the election result by applying the fres over all
plaintext votes.

Error tolerance property in this instantiation results from the correctness of the en-
cryption scheme and the MPCmi n . First, consider the following computation:

7.8 : cpi = g pi · rn
i

7.10 : cp∗i = cp(â+crd)i

i · r∗i n

}
⇒ cp∗i = g (â+crd)i pi · r′i n

⇒ ct[polyid,a(ât +crd)] := cp0 ·
k∏

i=1
cp∗i

= g
∑n

i=0(â+crd)i pi · rn

= gPolyid(crd+â) · rn

Due to the definition of pin-polynomial (7.2):

ct[polyid,a(ât +crd)] =Enc(0) if and only if crd+ât ∈ErrorLista +crdregistered

7.7. Instantiation with BGN cryptosystem 171

which with the overwhelming probability implies that â ∈ ErrorLista . Additionally, the
correctness property of the multi-party computation protocol MPCmin in (7.14) guaran-
tee that the ballot with a minimum value of polyid,a(ât + crd) remains in the weeding
step.

Note that polyid,a has a range in non-negative integers. Therefore if there is any bal-
lot with valid credentials and PIN, the output of MPCmin will be a valid ballot, namely
ct[polyid,a(ât +crd)] =Enc(0).

Additional Note. The main advantage of this instantiation is sorting the ciphertexts
without decrypting them (using MPCmin protocol). Because this approach does not
reveal whether any ballot has a valid PIN or not, thus sidestepping the attack on the
standard duplicate removal.

7.7 Instantiation with BGN cryptosystem

The second instantiation is based on composite order groups introduced by [54] and
the Groth-Sahai NIWI-proof system [143] with security based on the Subgroup decision
assumption.

The main point of using those primitives in this instantiation are, BGN is a homo-
morphic encryption scheme supports a single multiplication which is what we need
and also it can be efficiently implemented in a bilinear group. Having bilinear map al-
lows us to do the polynomial evaluation in an efficient and secure way and also having
the efficient NIWI-proof system.

Definition 47. BGN Cryptosystem works as follows. Its key generation algorithm, Kgen
outputs a pair of keys:

(
pk= (n,G,GT ,e, g ,h = g ′q),sk= (p, q)

)
where G= 〈g 〉 and GT are

two groups of order n and the secret key consists of two primes p, q such that n = pq.
e : G×G→ GT is bilinear (∀a,b ∈ Z, g ∈ G : e(g a , g b) = e(g , g)ab), non-degenerate (G =
〈g 〉 ⇒ e(g , g) ̸= 1GT) and commutable map. A ciphertext on message m ∈ [T], for T < q
has the form CT = g mhrandom ∈ G for some random number random. Decryption: raise
the ciphertext to power p and compute the discrete log.

The detailed of the protocol is as follows:

• Set Up Phase:

1. The election authority run the key generation algorithm of BGN encryption
scheme, ΠBGN.Kgen to generates the pair of keys:

(skBGN = p, q ,pkBGN = (n,G,GT ,e, g ,h)

2. Then chooses a random group element f
$←− G. Note that G = 〈g 〉 is a cyclic

group so there exists a unique integers z such that f = g z .

3. Set the election key as:

PKelection = (n,G,GT ,e, g ,h) , SKelection = (p, f)

4. Publish the public key on the bulletin board along with the election parame-
ter.

172 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

• Registration Phase: The registrar performs the following steps to generate the cre-
dential for the voter, vid

1. Generate credential and PIN: crd, a as in the Paillier instantiation.

2. Generate the list of errors and the pin-polynomial. Note that in this instanti-
ation the polynomial polyid,a only contains the polynomial, not the long cre-
dential:

ErrorLista = {a1 = a, a2, . . . , ak }

polyid,a =
k∏

i=1
(x −ai) =

k∑
i=0

pi xi

3. Run the encryption algorithm, Πbgn.Enc to obtain the following ciphertexts:

∀i ∈ [k] : cpi =Enc(pi) = g pi hrandomi ,

cp0 = g p0 · f crdhrandom

=Enc(p0 +crd× z).

Note that, technically cp0 is the encryption of p0 + crd× z. Although z is not
a known value to any parties, the registrar can compute cp0 without knowing
its exact value.

4. Generates the proof of validity of the polynomial polyid,a and
(
cpi

)
i=0,...k , sim-

ilar to the Paillier instantiation.

5. Store (
CP= (cp0,cp1, . . . ,cpk),CRD= g crd)

in the user device.

6. Publish vid :
(
Enc(crd) = g crd ·hrandom,CP

)
on bulletin board.

• Casting Ballot: During this phase, the voter can perform an audit on her device
to ensure its accuracy. This process is similar to the Paillier instantiation 2.7.2.2,
therefore we skip the details and only describe the ballot creation step.

Voter, vid, indicates her choice after entering her PIN, â to her vsd device. Then
the vsd encrypts the vote, the voter credential, and the entered â, under the public
key of the election(See 3) using random coins random j , resulting in the following
ciphertexts:

1. Compute:

CTvote =Enc(vote),CTcrd =Enc(crd) =CRD ·hrandom

2. Encrypt the PIN:

For i = 1, . . . ,k : cai =Enc(âi).

3. Re-randomize the polynomial coefficients:

For i : 0,1, . . . ,k : cp∗i = cpi ·hrandom∗
i

7.7. Instantiation with BGN cryptosystem 173

4. Set

CA = (ca1, . . . ,cak),

CP∗ = (cp∗0 , . . . ,cp∗k)

and provide a proof (proof of knowledge), πballot for the following relation, in-
cluding a joint proof of plaintext-knowledge for all the other ciphertexts in the
ballot and include the rest of the ballot in the hash for non-malleability. This
proof can be generated using the Groth-Sahai technique. (See Appendix 9.6)

Rbgn
ballot

=
{

(x, w) :

x = (
ppelection,CTvote,CTcrd,CA

)
,

w = (
vote,randomvote,CRD,rcrd, â, {ri }i∈[k]

)
:

CTvote = g vote ·hrandomvote ,

vote ∈ List of candidats,

CTcrd =CRD ·hrcrd ,

{cai = g (â)i ·hri }i∈[k]}

(7.17)

5. At the end of this phase, the voter signs her ballot of the following form:

ballot= (CTvote,CTCRD,CA,CP∗,πballot)

and submits it to the bulletin board.

Re-Vote Policy. In this instantiation, each voter is permitted to submit multiple
ballots, and in the tally phase, unlike to Paillier instantiation, it is possible to con-
sider the last valid ballot cast by the voter.

1. Ballot Validity check: In the first step, we remove exact ballot duplicates and
then we check the validity of the proofs and the signatures. In case any of any
failure, the ballot will be discarded. In the next step we need to remove extra
ballots for each voter, making sure a valid ballot is kept, if existing.

2. Polynomial Evaluation: Compute the encrypted polynomial evaluation as
follows:

EncT (t) = e(CTcrd, f)−1 ·e(cp∗0 , g) ·e(cp∗1 ,C A1) · · ·e(cp∗k ,C Ak)

=EncT (e(gpolyid,a,g (âid), g))
(7.18)

We refer to this value byEncT (t) with t being the polynomial evaluation which
can be seen as an encryption in the target space (group GT).

3. Mixing: Now verifiably mix the tuples (CTcrd,CTvote,EncT (t)).

4. For each ballot we create EncT (crd+ t):

e(CTcrd, g) ·EncT (t) =EncT (e(g crd, g)) ·Enc(e(gpolyid,a (â), g))

=EncT (e(g crd+polyid,a (â), g))

174 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

Now, we need to remove ballots having the same value e(g crd+polyid,a (â), g),
which basically means same credential and same â. This can be done by run-
ning a PET or using some hash function. At the end of this step we have a list
of ballots of the following form:(

EncT (e(g crd+polyid,a (â), g)),CTvote
)

(7.19)

Additional Note. If we have a small number of voters, it is possible (efficient)
to do this via PETs. Further we can mix between each duplicate removal. For
a larger number we suggest to split the board in two, remove duplicates sep-
arately, then mix and do duplicate removal again. This will decrease the in-
formation from the distribution of confirmed duplicates to a coercer carry-
ing out the leaky duplicate removal attack mentioned in Sec. 7.3. Addition-
ally for the sake of privacy we can replace the first component in (7.19) with
hashhk(e(g crd+polyid,a (â), g)(â)) where hashkey is a keyed-hash function with se-
cret key hk.

5. We now need to select eligible valid votes. We mix the above list and the list
of registered encrypted credential. To this end, compare crd+poly(id,a)(â) to
the list of registered credentials. Any ballot that has the match with a regis-
tered credential would be a ballot with valid credential where its polynomial
evaluation is equal to zero with overwhelming probability. There is only a
negligible chance of that invalid crd and invalid PIN generate an invalid full
credential. Next, we do a further PET against the short credentials. This will
reveal malicious authorities creating valid polynomial on their own. If this is
positive too, we decrypt the vote and continue to the next registered creden-
tial.

Error tolerance property. The following computation shows the correctness of equa-
tion 7.18, in other words it shows how to evaluate the polynomial on the input value
â:

e(CTcrd, f)−1 ·e(cp∗0 , g) ·e(cp∗1 ,C A1) · · ·e(cp∗k ,C Ak) =
e(CRD ·hr, f)−1 ·e(g p0 (f)crdhr0 , g) ·e(g p1 hr1 , gαi hγi) · . . .e(g pk hrk , gαk hγk) =
e(CRD, f)−1 ·e(h, f)−re(g p0 f crdhr0 , g) ·e(g p1 hr1 , g ai

hγi) · . . .e(g pk hrk , g ak
hγk) =

e(CRD, f)−1e(f ,hr)e(f ,CRD)e(g p0 hr0 , g) ·e(g p1 hr1 , g ai
hγi) · . . .e(g pk hrk , g ak

hγk) =

e(hr, f)(
k∏

i=0
e(g pi , gαi)) · (

k∏
i=0

e(g pi ,hγi)) · (
k∏

i=0
e(gαi ,hri))(

k∏
i=0

e(hγi ,hri))

e(g , g
∑k

i=0 piαi)) ·e(g ,hr) = e(g , gpolya (â)) ·e(g ,hr)

As a result, if we raise the above term to the power p, the result is 1 if and only if
polyid,a(â) = 0. Also, due to the secret f and zero-knowledge proof, πballot, malicious
voters cannot construct a fake polynomial resulting in zero-evaluation.

Additional Note. The main advantage of this instantiation is that voters can vote anony-
mously; thus, unlike the first instantiation, no identity obfuscation is required. Addi-
tionally, by utilizing Groth-Sahai proof techniques, the implementation becomes more
efficient. Particularly in an election with many candidates and voters, compared to the

7.8. Instantiation with Functional Encryption Scheme 175

sigma protocol, the proof of membership will be more effective. Moreover, we can im-
plement the mix-net components using the Groth-Bayer mix-net servers [28].

7.8 Instantiation with Functional Encryption Scheme

Our third instantiation7 relies on the functional encryption scheme, precisely, the inner
product encryption scheme 4. The primary advantage of this approach is that it simpli-
fies the protocol during the registration and tally phases.

Recall the polynomial evaluation of an encrypted value x. The polynomial can be
considered as a vector of its coefficient

polypin = p0 +p1x + . . .+pk xk ≈ P⃗ = (p0, . . . , pk)

and the point x can be represented as the vector x⃗:

x⃗ = (1, x, . . . , xk).

Then the evaluation of poly(x) is obtained by computing the inner product of these two
vectors:

polypin(x) = 〈P⃗ , x⃗〉
During the registration phase of the first two protocol instantiations, a registrant

generates a valid credential and a valid pin, retrieves the polynomial, and stores the
polynomial’s encryption on the voter device. However, anyone can carry out the proce-
dure because all encryption steps are performed with respect to some public-key cryp-
tosystem. To be specific, anyone can generate the credential and pin and store the en-
crypted data on the voter device. In other words, for the sake of eligibility and privacy,
it is necessary that the voter credential, her pin, and the encryption of her vote are all
linked together and cannot be generated by someone who does not know some secret
value. This aspect complicates the tally process because it is critical to match the cre-
dentials of all ballots to the registered (legitimate) voters.Using the functional encryp-
tion scheme, we may consider a different scenario.

Motivation. Consider the polynomial as a function. In the context of the functional
encryption scheme, while everyone can encrypt the polynomial, only the owner of the
master secret key can generate the polynomial’s token. Now, rather than the encryption
of the polynomial, its secret token is stored on the voter device. This ensures that the
polynomial evaluation is zero if and only if the ballot was cast by a legal (registered)
voter with a high probability. As a result, this simplifies the protocol, particularly during
the tally step.

Another motivation for using the IPE is that the voter’s token generated by the elec-
tion trustees is essential in the verification phase, both for individual and universal veri-
fiability. It allows the voter to trace her ballot, and at the tally phase, it can be substituted
with proof of the decryption procedure’s correctness.

Cryptographic Primitives In this instantiation we have all the primitives listed in 7.5.2
except that we replace the public key cryptosystem with the inner product encryption
scheme.

7This instantiation is not included in our publication [98]

176 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

We consider the inner product encryption scheme described in section 4.6:

ΠIP(k,1ℓ) = 〈IP.SetUp, IP.TokGen, IP.Enc, IP.Dec〉

for vector space Zk
p , where k − 1 = ∣∣ErrorListpin

∣∣ is the number of errors tolerated by

the protocol. Further by ΠGS = 〈Prove,Verify〉 we refer to a non-interactive witness-
indistinguishable proof technique presented in [143].

Considering the notation form 4.6 the protocol is detailed as follows:

• Setup Phase. This procedure is conducted by the election authority and election
trustees distributively in the following steps:

1. First run the setup algorithm of inner product encryption scheme, Algorithm 4.6,
to generate (mskIP,mpkIP).

2. For i ∈ [k],b ∈ [2] generate random integers f ′
i ,b ,h′

i ,b ←Z∗
p to obtain:

F ′
i ,b = f ′

i ,b , H ′
i ,b = h′

i ,b , i = 1, . . . ,k,b = 1,2

These extra random numbers are needed to randomize the voter’s token.

3. To prove the correct construction of MPKelection, we may use the verification
algorithm for the IPE scheme described in 5.6.1. This proof should be pub-
lished.

4. Output Keyelectionelection = (MSKelection,MPKelection) where:

MPKelection =
(
(p,G,GT ,e),mpkIP,pkΠ, {F ′

i ,b , H ′
i ,b}i ,b

)
,

MSKelection =
(
mskIP,skΠ, { f ′

i ,b ,h′
i ,b}i ,b

)
respectively are the master public key and the master secret key of the elec-
tion.

• Registration Phase: At the beginning of this phase an empty list of voters creden-
tial
VoterCredentialList is initiated. Then for voter vid the registrar, does the follow-
ing steps:

1. Generating the long credential: Same as Paillier instantiation.

2. Generating PIN, the short credential: Pick randomly a number a
$←− PinSpace

and declare it to the voter vid.

3. Compute the error list for a based on the election policy: A registrar based on
the error-tolerance policy of the election obtain the set
ErrorLista as (7.1)and then set the polynomial as follows:

polyâ =
k∏

i=1
(x −crd−ai) =

k∑
i=0

pi xi =⇒ ⃗polya = (p0, . . . , pk)

4. Run the encryption algorithm IP.Enc and encrypt the credential of the voter
with respect to the polynomial vector ⃗polya = (p0, . . . , pk):

Enc(MPKIP,polya ,crd) =CT[polya ,crd]

7.8. Instantiation with Functional Encryption Scheme 177

5. Run the token generation algorithm IP.TokGen and generate the token for the
vector ⃗poly to obtain the following:

Toka =Tok ⃗polya
← IP.TokGen(MSK,polya)

Toka = (
K A,KB ,

{
K1,i ,K2,i ,K3,i .K4,i

})
i∈[k],

partial.Toka

{
KB ,K ∗

1,i = K
f ′

1,i

1,i ,K ∗
2,i = K

f ′
2,i

2,i ,K ∗
3,i = K

h′
1,i

3,i ,K ∗
4,i = K

h′
2,i

4,i

}

6. Send partial.Toka ,crd to the voter. We do not send all components of the to-
ken to the voter device because having the entire token enables the voter (and
coercer) to retrieve PIN and the vote. This raises a serious issue if the coercer
also has access to the voting account. Namely, the coercer can attempt several
pins, encrypt some random inputs with respect to the pin. Then, by compar-
ing the decryption’s output to the encryption inputs, the coercer can easily
identify which pins are valid and which are not.

7. Provide a proof πpoly for the following relation:

Rpoly =
{

(x, w) :

x = (
id, a,crd,ErrorLista ,Tok∗a

)
w = (

(f ′
i ,b ,h′

i ,b)i∈[k], (ri)i∈[k]
)

:(
K A,KB ,

{
K1,i ,K2,i ,K3,i .K4,i

})
i∈[k] = IP.TokGen(MSKIP,polya ;ri)

∧
partial.Tk= {

KB ,K ∗
1,i = K

f ′
1,i

1,i ,K ∗
2,i = K

f ′
2,i

2,i ,K ∗
3,i = K

h′
1,i

3,i ,K ∗
4,i = K

h′
2,i

4,i

}}
The above proof can be done using the algorithm 5.6.2 and πpoly is sent to the
voter and verified by the voter.

8. Publish IP.Enc
(
MPK, ⃗polya ,crd)

)
on the bulletin board. Note that here we en-

crypt the credential with respect to polynomial vector. This enables us to gen-
erate the token related to the pin for the voter, which can be considered her
verification key.

• Casting Ballot: In this step, the voter vid indicates her choice by entering her pin
â on her device. Then the vsd encrypts the vote, the voter credential, with respect
to the vector

⃗CRDâ = (
1,(crd+ â), . . . , (crd+ â)k)

(7.20)

under the master public of the election using random coins random j , resulting in
the following ciphertexts:

CTvote = IP.Enc(mpkIP,
(
1,(crd+ â), . . . , (crd+ â)k)

,vote;random),

CTcrd = IP.Enc(mpkIP,
(
1,(crd+ â), . . . , (crd+ â)k)

,crd;random)

178 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

It also re-encrypt Tok∗ as follows:

partial.Tokpin =
(
K random

B ,
{
K random

1,i ,K random
2,i ,K random

3,i .K random
4,i

})
i∈[k]

Notice that the IPE scheme in 4.6 allows re-encrypting without knowing the plain-
text.

In the next step, vsd provides a proof, πballot, (also proof of knowledge) for the fol-
lowing relation:

Rip
ballot

=
{

(x, w) :

x = (
CTvote[crd+ â],CTcrd[crd+ â],re.Enc(Tok∗)

)
w = (

crd, â,vote, {random}
)

:

CTvote = IP.Enc(MPK, ⃗CRDâ ,vote;random)

CTcrd = IP.Enc(MPK, ⃗CRDâ ,crd;random)}
We can implement this proof by using the Groth-Sahai proof technique (See 3.10.3).

The VSD submits ballotid as voter’s ballot to the election server on an authenti-
cated channel. ballot= (CTcrd,CTvote,Tok∗ = (cp∗1 , . . . ,cp∗k),π)

The Benaloh challenge is done the same as Paillier instantiation 7.6.

• Tally Phase:

1. We remove exact ballot copies and all ballots with invalid proof and the sig-
nature In the first step.

2. Since each voter will be associated with possibly more than one ballot, we
need to weed them. We make sure a valid ballot is chosen - if existing.

3. We run a mix-net to create a secret re-encryption shuffle of the remaining
ballots.

4. In this step we have a list of ballots in the form of(see (7.20))(
CT[⃗CRDâ ,crd],CT[⃗CRDâ ,vote],partial.Toka

)
K A =

n∏
i=1

K
− f1,i

3,i ·K
− f2,i

4,i ·K
−h1,i

5,i ·K
−h2,i

6,i

For each ballot compute the following:

IP.Dec(Tokpin,CT[⃗CRDâ ,crd]) = e(g ,h)random·poly(crd+â) ·e(g , g)crd.

And they remove all ballots with the same value except one.

5. Run another mix-net and anonymize the remaining ballots.

6. In this step we have a list of ballots in the form of (CT[vote, â],Tok∗); in this
step, the election trustee compute the last component of the token for each

7.9. Security Analysis 179

ballot, add the following component to each ballot:

K A =
n∏

i=1
K

− f1,i

3,i ·K
− f2,i

4,i ·K
−h1,i

5,i ·K
−h2,i

6,i

and decrypt all ballots. The output of the decryption algorithm will be a valid
vote if the pin is valid; otherwise, it gives us a random string.

Correctness and Error Tolerance Property. The correctness of the protocol and its error-
tolerance property are the easy corollaries of the correctness of the inner product en-
cryption scheme.

7.9 Security Analysis

In this part, we conduct a security analysis on our scheme by providing the security
model, stating the security criteria we wish to guarantee, and determining the security
assumptions needed to support them.

Furthermore, we demonstrate that the presence of the underlying assumption guar-
antees that our protocol has the required feature. We here focus on the instantiations
with Paillier encryption scheme.Following the definition 6.2.1, we formally describe our
protocol by

ΠpinJCJ = 〈nv,Agent,Πh,cList,Γelc, fres〉
where,

• nv is the number of voters (and their voter supporting devices vsd),

• Agent is the set of participants including honest and dishonest voters, scheduler, s,
election trustees, T, registrars, R, judges, J, the bulletin board, BB. We consider
the adversary and the coercer as part of the set Agent.

• cList denotes the set of choices or the list of candidates.

• Γelc denotes a probability distribution on the set of vote choices.

• Πh is the set of algorithms that are defined by the protocol description.

• fres is the result function.

7.9.1 Security Model

Our protocol aims to preserve the JCJ-based protocol’s security model. Specifically, we
assume the trust assumptions made in [207].

1. The adversary is computationally bounded.

2. In case of using the threshold cryptosystem, we require that the majority of the
election trustee and also the majority of the registrarsare trustworthy. Namely, the
adversary cannot corrupt a threshold set of election trustee. By using single party,
we assume the election trustee and the registrar are honest.

3. At least one mix server is honest.

4. There is a point in the voting phase, where the adversary cannot control the voter.

180 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

5. Voter’s vsd does not leak the voter’s private credentials to the adversary.

6. The adversary cannot control the voter’s computer or voter’s device. However,
considering the Benaloh challenges in the protocol, this assumption will reduce:
The adversary cannot simultaneously control the voting and the verification envi-
ronment[206].

7. The channel to the ballot boxes is anonymous.

In this section, we formally establish the level of verifiability, privacy, and coercion resis-
tance our protocol provides. We demonstrate that PIN-JCJ is more resistant to coercion
than the original JCJ protocol and smart-card based JCJ. We use the general notion of
E2Everifiability described in 6.3.1 for verifiability analysis and the bPRIV notion of se-
curity proposed in [46], presented in Section 6.4.1 for privacy analysis.

7.9.2 Privacy Proof

Now we analyze the privacy of the PIN-JCJ protocol, instantiated with Paillier cryptosys-
tem, sigma protocol, πσ, and multiparty computation protocol, MPCmi n .

To this end, we adapt the definition, notion, and notation presented in section 6.4
based on the paper [46]. In this paper, the authors propose a new game-based defi-
nition of privacy called bPRIV. Additionally, they identify new properties, strong con-
sistency(see Section 6.4.3 above), and strong correctness (see Section 6.4.3 above). In
this section we first prove our protocol satisfies all three properties and then based on
theorem in [46] we conclude the simulation privacy of our protocol.

It is worth noting that the one reason we use this setting to establish our protocol’s
privacy level is that our protocol heavily relies on the re-voting policy, and we need to
demonstrate that this re-voting policy has no effect on the ballot’s privacy.

Assumptions: To prove the bPRIV-privacy of PIN-JCJ, we make the following assump-
tions about the cryptographic primitives we use: (see also Section 7.6)

A.1 In this case the underlying public key encryption scheme, Paillier cryptosystem
(BGN and IPE in other instantiations), is IND-CPA-secure. Considering the theo-
rem 2.7.2, this assumption will reduce to the hardness of residue problem. 3

A.2 The signature scheme is EUF-CMA-secure (See Definition 15).

A.3 The multi-party computation protocol, MPCmi n , realizes an ideal functionality.
This essentially means that it takes a vector of ciphertexts and returns the cipher-
text related to the plaintext with the minimum value without any leak.

A.4 All the proofs, πKgen,πShuffle,πDec and πEnc are Zero-Knowledge simulation sound
extractable with respect to expected polynomial-time adversaries.

A.5 The scheduler s, the bulletin board, BB, the majority of election trustees (in a
distributed setting) and all registrars (r ∈R) are honest. In the following we assume
⌈nt

2 ⌉ < t and ai j ∈ T which the set of election trustees contains nt trusted parties
involved in generating the secret key of the election(distributively). Following from
definition (6.1) we formulate the above assumption in:

ϕ= hon(s)∧ [∨
i1<...<it
i j ∈[nt]

(hon(ai1)∧ . . .∧hon(ait))
]∧ [∧

r∈R
(hon(r))

]∧hon(BB)

7.9. Security Analysis 181

To avoid future heavy notation, we presume a single party, resulting in the follow-
ing formula:

ϕ= hon(s)∧hon(T)∧hon(R)∧hon(BB)

The bPRIV definition is only considers a single authority holding the secret key
for simplicity and we will follow this approach here. Note that this is especially
simplifying for the MPCmin protocol, where we simply assume that the election
authority decrypts privately to find the minimal plaintext value and provides a
Zero-Knowledge proof of correctness for public validation.

A.6 The polynomial evaluation process is correct regarding the error-list. Namely, the
zero set of polynomial only contains the error list described in the election policy
document except with negligible probability.

Theorem 7.9.1. Considering the assumption [A.1-5],ΠpinJCJ = 〈nv,Agent,Πh,cList,Γelc, fres〉
has bPRIV property (See 44) in the presence of any PPT adversary.

Here we present a proof sketch of the above theorem and we are not going through
the details.

Proof sketch.8

In order to prove the theorem, namely to prove that any PPT adversary A distin-
guishes the two experiments (See 6.1), ExpbPrivA (1ℓ)[β] for β= 0,1 with negligible proba-
bility, we define a sequence of games:

ExpbPRIVA (1ℓ)[β= 0] =Game0,Game∗0 ,Game∗1 , . . . ,Game∗n =Game1 =ExpbPRIVA (1ℓ)[β= 1].

We start with Game0 in which the adversary interacting with the ExpbPRIVA (1ℓ)[β= 0]

and end up with the adversary interacting with the ExpbPRIVA (1ℓ)[β= 1] in game Game1.
Every two consecutive games can only be distinguished by the PPT adversary with neg-
ligible probability. As a result, we will obtain a bound on the bPRIV distinguishing ad-
vantage of any adversary by a negligible quantity in term of the security parameter, ef-
fectively showing that PIN-JCJ has the bPRIV property.

Before starting the sequence of games, we establish our notations. At any point,
since the visible bulletin board is built through a succession of queries (OvoteLR(id,vote0,vote1)
andOcast(id,ballot) queries), our bPRIV reduction can associate with any entry (idi ,balloti)
in the visible bulletin board, a tuple (idi ,ballot0

i ,ballot1
i ,vote0

i ,vote1
i) where:

ballot0
i [vote0

i] , ballot1
i [vote1

i]

are the ballots seen by the adversary when β = 0,1 respectively. Further, vote0
i and

vote1
i are the votes contained in the corresponding ballots. Typically, if the i -th entry

in the bulletin board has been built through a successful Ocast(id,ballot) query, then
ballot0

i = ballot1
i and vote0

i = vote1
i . If (idi ,balloti) is the i -th entry in the visible board,

then ballot
β

i = balloti . We also let BBi
0 present the contents of the bulletin board BB0

at Game∗i .
We also remind that we use the Paillier encryption scheme, and Sigma-protocol with

perfectly hiding property in our first instantiation, which allows us to fake a proof with
the help of the simulator and its trapdoor.

8Our proof for bPRIV property is inspired by the privacy proof of Helios e-voting protocol demonstrated in [46]

182 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

Game0 is the bPRIV game corresponding to ExpbPRIVA (1ℓ)[β= 0]. In this game, the adver-
sary sees the ballot box BB0 with the real result and real auxiliary data.

Game∗0 is the game obtained by introducing the following change in Game0. In the lat-
ter game, the adversary expects to see the output (res,πres) ← tally(BB0,sk). The
change consists on simulating the tallying proof (res,Π∗) ← SimTally(.) by pro-
gramming the Random Oracle. Thanks to the Zero-Knowledge property of the
Sigma-protocol, the distinguishing probability of the bPRIV adversary in Game0

negligibly is close to that in Game∗0 . From now on, the tallying proof is always sim-
ulated. This proof contains several proofs, such as all decryption proofs and the
proofs in the PETsand each change should, in principle, be a hybrid, but we sup-
press this for simplicity.

For i = 1, . . . ,n where n is the number of entries in the bulletin board BB0. we
define games Game∗i by changing contents of BB0 from Game1

i−1 to Game1
i .

Game∗i is obtained from Game1
i−1 by taking one of two possible actions, depending on the

contents of the tuple (idi ,ballot0
i ,ballot1

i ,vote0
i ,vote1

i) that the security reduction
keeps internally:

1. If ballot0
i = ballot1

i do nothing.

2. If ballot0
i ̸= ballot1

i ; replace i -th entry (idi ,ballot0
i) in BB0 with (idi ,ballot1

i).

3. Uses the random oracle H programming to simulate the tally proof. The re-
sult function that is used for bPRIV in the case of our schemes is simply out-
putting all plaintext votes in randomized order.

Game1 is defined the same as Game∗n , which in fact is the experiment ExpbPRIVA (1ℓ)[β= 1].

Lemma 1. Assuming the Zero-Knowledge property of the underlying Zero-Knowledge
proof system (sigma protocol in our protocol), Game0 and Game∗0 are computationally
indistinguishable for any PPT adversary.

Proof. This fact follows from the Zero-Knowledge property of the NIZKP-proof system
because any PPT adversary who can distinguish these two games with a non-negligible
advantage, can be used to violate the Zero-Knowledge property of the proof system with
non-negligible probability.

Lemma 2. Assuming the proof of knowledge and Zero-Knowledge property of the under-
lying Zero-Knowledge proof system, and IND-CPA property of the public-key encryption
scheme Game∗i and Game∗i+1 are computationally indistinguishable from the PPT adver-
sary view, for i = 1, . . . ,n.

Proof. We assume there exists a PPT adversary A who can distinguish these two games
with non-negligible probability:

Adv[A(ℓ)] = ∣∣Pr
[
A(.)⇌ExpbPRIVA (1ℓ)[0] 7→ 0

]
−Pr

[
A(.)⇌ExpbPRIVA (1ℓ)[1] 7→ 1

]∣∣
Then we use this adversary to describe a simulator A∗, which uses A as its subrou-

tine to break the non-malleability property of a non-malleable cryptosystem. Based on
this contradiction, we conclude that the advantage of A should be negligible.

7.9. Security Analysis 183

Following [43], a cryptosystem includes an IND-CPA secure encryption scheme and
a Zero-Knowledge proof of knowledge system for the encryption relation is non-malleable
CPA-secure.9As a result assuming A.4(See 7.9.2), we consider our cryptosystem a non-
malleable cryptosystem.

A take a challenge ciphertext ct from the NM-CPA and incorporate it into the bPRIV
hybrid as ciphertext cti . Notice that the A cannot get information from polynomial
evaluation since we randomized it. Now A submit all ballotid j except ballotidi to NM-
CPA for decryption oracle (cannot be equal to ciphertext), and it uses that for output
of decryption.Then it simulates proofs.Now, if the adversary A has a non-negligible ad-
vantage in ExpbPRIVA (1ℓ), then A∗ also has a non-negligible advantage in Expnon−mall

A (1ℓ)

and based on our assumption, we conclude thatAdv(ExpbPRIVA (1ℓ)) should be negligible.
Now assuming there exists a PPT adversary A that distinguishesGame∗i andGame∗i+1

with non-negligible advantage, then we will have an adversary A∗ whose advantage in
experiment 2.5 is non-negligible.

To summarize the above arguments, we assume that the adversaryA∗, interacts with
the challenger Cnon−mal in experiment Expnon−mall

A (1ℓ) 2.5. On the other side, A∗ is in-
teracting with A as a challenger in the bPRIV experiment 6.1, shown in figure 7.1. Put
simply, adversary A∗ set up an election using the public key from Cnm−ma.

7.9.3 Strong Consistency Property

Following definition 45 to argue that PIN-JCJ protocol achieves strong consistency, we
need to prove the following probability in the ExpsConA (1ℓ) 6.2 is negligible with respect
to the required algorithms Extract, ValidInd and the re-vote function ρ:

Pr
[
res ̸= fres

(
ρ
(
{Extract(idi ,balloti)}i∈[n]

)) | ExpsConA (1ℓ)
]
< negl(ℓ)

For the Paillier instantiation of PIN-JCJ protocol, these required algorithms and func-
tionality are detailed as follows:

Extract Algorithm. Recall that in PIN-JCJ protocol the ballot has the form (7.12):

ballot[crd, â,vote] = (
ct[crd],ct[vote],ct[crd, â] = (cp∗1 , . . . ,cp∗k),πballot

)
.

The Extract algorithm has these steps:

1. check the proof πballot and returns ⊥ if Verify(ballot) 7→ reject,

2. using the election’s secret key, SKelection it runs the decryption algorithm to get the
polynomial evaluation polypin(â,crd),

3. if the polynomial evaluation is not equal to zero, it outputs ⊥,

4. execute the decryption algorithm

Dec(MSK,ct[vote]) 7→ vote∗,Dec(MSK,ct[crd]) 7→ crd

and returns (crd,vote∗).

9In [43], they consider the Sigma-Protocol with a strong form of the Fiat-Shamir transformation which is Zero-
Knowledge and simulation sound extractable with respect to expected polynomial-time adversaries.

184 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

FIGURE 7.1: This figure depicts the non-malleable experiment where adversary
A∗ acts as the bPRIV challenger, CbPRIV, versus adversary AbPRIV. In fact, A∗
take advantage of the AbPRIV ability to win the non-malleable game while inter-

acting with challenger Cnon−mall.

Cnon−mall Anon−mall/ A∗ /CbPRIV AbPRIV

(pk,sk) ←Kgen(1ℓ)
pk−−−−−→

ppelection ←A∗(pk)

(pkelection=pk,ppelection)−−−−−−−−−−−−−−−−−−−−→
For j = 1, . . . i −1

(id j ,vote0
j ,vote1

j) ←A
(id j ,vote0

j ,vote1
j)

←−−−−−−−−−−−−−−−−
ballotid j = (ctvote =Enc(pk,id j ,vote1

j),∗)

For j = i
(id j ,vote0

j ,vote1
j) ←A

(m0=vote0
j ,m1=vote1

j)
←−−−−−−−−−−−−−−−−−−−

β
$←− {0,1}

ct∗ ←Enc(pk,mβ)
(ct∗,π)−−−−−−−−→

ballotidi = (ct∗, ,πballot,∗)
For j = i +1, . . .n

(id j ,vote0
j ,vote1

j) ←A
(id j ,vote0

j ,vote1
j)

←−−−−−−−−−−−−−−−−
ballotid j = (ct∗vote =Enc(pk,id j ,vote1

j),∗)

For j ∈ [n], j ̸= i :
(ballot j)←−−−−−−−−−−−−−A∗

(vote j OR ⊥)−−−−−−−−→A∗

fres((vote1
1, . . . ,vote1

i−1,vote0
i), . . .vote0

n)
π′ ← SimProof (res)

(res,π′)−−−−−−−−−−−−→A
β′ ←A(res,π′)

β′ ←A∗

7.9. Security Analysis 185

Individual Validation Algorithm. ValidInd(ballot) checks the validity of the ballot by
running the verification algorithms, which takes as input all Zero-Knowledge proof sys-
tems generated in the casting phase. The ballot is considered valid if all proofs are ac-
cepted and if any proof fails, returns ⊥.

To specify the re-vote policy, recall that we employ a multi-party computing protocol
in Paillier instantiation of the PIN-JCJ protocol to choose the ballot with the minimum
polynomial evaluation value from all ballots submitted by a single voter with identifier
id. If the minimal value appears in more than one ciphertext, MPCmi n picks a random
one. This results in the following re-vote policy:

re-Vote Policy: If the voter vid casts several ballots using a valid credential (all of which
result in a polynomial evaluation of zero), the tally phase considers a random valid bal-
lot.

Now assume a voter with an identification id casts q valid ballots:

ballot1 = [vote1], . . . ,ballotq = [voteq]

We show her submitted votes by the set

voteListid = {voteid1 , . . . ,voteidq }.

According to the above re-vote policy, we formally define the correctness of the tally
results in the following definition.

Definition 48. In e-voting protocol,ΠpinJCJ = 〈nv,Agent,Πh,cList,Γelc, fres〉, if the follow-
ing holds true, we say that the tally result is valid with respect to the tally function fres if
there exist j1, . . . , jnv such that:

res= fres(voteid1, j1 , . . . ,voteidnv , jnv
) : ∀i = 1, . . . ,nv : voteidi , ji ∈ voteListidi

Strong Consistency Assumptions We consider the following assumptions to prove the
strong consistency of PIN-JCJ protocol:

A.1 The underlying public-key encryption scheme, Paillier cryptosystem in this case
(BGN and IPE in other instantiations) is correct.

A.2 The signature scheme s is EUF-CMA-secure 15.

A.3 The polynomial evaluation process is correct with respect to the error-list. Namely,
the zero set of polynomial only contains the error-list, described in the election
policy document.

A.4 The MPC protocol, which determines the validity of the polynomial evaluation, is
correct.10

A.5 πKgen,πShuffle,πDec,π⊥
Dec are sound systems and πEnc are a NIZKPoK.

A.6 The scheduler s, the bulletin board BB are honest, the election trustee and all the
registrars are honest.11

ϕ= hon(s)∧hon(T)∧hon(R)∧hon(BB)
10This assumption particularity is needed for the Paillier instantiation. For other instantiation we only need the

correctness of the public key cryptosystem..
11Simplified version: Assuming the single party setting rather than the distributed setting.

186 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

Theorem 7.9.2. Under the assumptions stated above, [A.1-6] (See 7.9.3) and the two
algorithms Extract and ValidInd, the protocol ΠpinJCJ = 〈nv,Agent,Πh,cList,Γelc, fres〉 is
strongly consistent.

Proof. The first condition of strong consistency is that honestly created ballots are cor-
rectly extracted, which is concluded by the correctness property of the building blocks:
correctness property of the public-key cryptosystem [A.1], completeness of the Zero-
Knowledge proof system for the relation πballot [A.5] and the correctness of the polyno-
mial evaluation [A.3]. Therefore the first and the second condition of definition 45 are
met in our protocol.

The third condition says that no adversary can produce a ballot box on which the
tally algorithm succeeds but the result is incorrect according to definition 48. But first
let us review the tally phase of our protocol.

Assume the ballot box (in our protocol the bulletin board) contains q valid ballots all
from a single voter (for simplicity we put id= 1)

ballot1 = [vote1,crd1, â1], . . . ,ballotq = [vote1,crd1, âq].

In the tally phase we have the following steps; first we obtain the ciphertext with
minimum value of polya(â + crd) by running the MPCmi n protocol for each voter. We
keep this ballot and remove all the other ballots for voter vid. Since polyid,a has the
range in non-negative integers if there is any ballot with valid credential and PIN, the
output of MPCmin will be a valid ballot.

Then we anonymize the remaining ballots, and at the end we decrypt bothCT[polya(crd+ â)]
and CTvote and accept all the vote with polya(â +crd) = 0 and discard others.

As a consequence, in our protocol, the tally result is incorrect if one of the following
failures occurs:

1. A ballot with an invalid credential plus pin is considered valid. This would only
happen if one of the two events happen:

(a) The polynomial evaluation yielded a zero rather than a non-zero number,

(b) TheMPCmi n protocol output a ciphertext that does not contain the minimum
value.

Due to the assumptions [A.1,2], both of the above events happen with negligible
probability.

2. A ballot with a valid long credential and valid PIN is removed from the bulletin
board. This may happen if the weeding step in the tally phase fails, which can
happen in two ways:

(a) The polynomial evaluation wrongly outputs a non-zero value instead of zero,
which does not occur due to the correctness of the polynomial evaluation and
the correctness of the decryption algorithm.

(b) The ballot was eliminated because it was deemed a duplicate ballot cast by
an adversary (not the voter) using the same credential and valid pin. This sit-
uation similarly has a negligible probability since the only potential scenario
is an adversary successfully guessing the voter credential.

As a result of the above argument plus considering the soundness of the mix-nets leads
to the theorem 7.9.2 with respect to assumptions [A.1-6] (See 7.9.3).

7.9. Security Analysis 187

7.9.4 Strong Correctness Property

Recall the validation algorithm ValidInd (See 45) that takes as input the public key of the
election pk, a ballot ballot, and outputs accept or reject. The definition of strong correct-
ness (See 6.4.3) to show that our protocol achieves the strong correctness property, we
need to prove that no polynomial adversary can generate a bulletin board BBA, such
that a fresh honestly created ballot for an honest voter who has not voted previously is
rejected.

We emphasize two points:

i. Because the PIN-JCJ protocol allows for re-voting, a valid ballot cast by the voter
will be accepted even if the adversary casts the ballot in advance on the voter’s be-
half. However, it should be noted that this may not be true for all protocols, such
as the DeVoS protocol presented in 8 and extended Helios presented in [180], be-
cause in these protocols, the fresh vote is dependent on the previously submitted
ballot. As a result, an adversary may cast a vote that invalidates the subsequent
one.

ii. There is a possibility that the adversary casts a valid ballot on the voter’s behalf,
which will result in the removal of the original honest ballot as a duplicate of the
adversary ballot during the tally phase. We prove that the probability of this event
occurring for an adversary without knowing the voter credential is negligible due
to the following assumptions.

Strong Correctness Assumptions: To prove the strong correct property of PIN-JCJ, we
make the following assumptions about the primitives we use (See 7.6 and 7.9):

A.1 The underlying public key encryption scheme, Paillier cryptosystem in this case
(BGN and IPEin other instantiations), are IND-CPA-secure.

A.2 The signature scheme is EUF-CMA-secure.

A.3 The MPCmin protocol is correct.

A.4 All the proofs, πKgen,πShuffle,πDec and πEnc are Zero-Knowledge proof system.

A.5 The scheduler s, the bulletin board BB are honest, the election trustee and all the
registrars are honest.

ϕ= hon(s)∧hon(T)∧hon(R)∧hon(BB)

A.6 The polynomial evaluation process is correct respect to the error-list. Namely, the
zero set of polynomial only contains the error list, described in the election policy
document.

As a result of the preceding argument leads to the theorem 7.9.3 with respect to above
assumptions, A[1-6]:

Theorem 7.9.3. Under the assumptions stated above, A.1-6 the protocol Πpin−JCJ de-
scribed by the tuple 〈nv,Agent,Πh,cList,Γelc, fres〉is strongly correct in the presence of a
computational-bounded adversary.

188 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

7.9.5 Verifiability

In this section, we formally evaluate the PIN-JCJ protocol’s verifiability. To this end we
use the general KTV computational model and adapt the verifiability definition with the
goal γ(ϕ) proposed in [85].

Our primary reason for choosing this model for the verification analysis, apart from
its expressiveness that it is particularly suitable for JCJ analysis, as there are no explicit
assumptions regarding the result function and re-voting policy. Additionally, it is appli-
cable to MPCmin protocols.

In our model judge, J, an honest agent, is in charge of the verification procedure,
and he executes the honest program π̂J whenever triggered by the scheduler s. At the
end of the verification procedure, J outputs accept or reject through his own channel.

In a nutshell, in a PIN-JCJ protocol run, judge J takes as input only public informa-
tion (e.g., the Zero-Knowledge proofs in PIN-JCJ published on the bulletin board) and
then performs certain checks. If all checks succeed, the judge accepts the protocol run,
or otherwise rejects it. Precisely judgeJ conduct the program π̂J as defined in Figure 7.2.

Verifiability Assumption. We prove the verifiability property for PIN-JCJ for the goal
γ(k,ϕ) as defined in 42 and under the following assumptions:

A.1 The underlying public-key cryptosystem (such as BGN, Paillier or IPE) is correct.

A.2 The probability that an adversary retrieves (such as blindly guessing or stealing
the voter credential) the voter’s PIN and long credential (crd) is negligible because

crd
$←− {0,1}ℓ is a long string and it is chosen uniformly at random. Therefore, we let

Prpin and Prcrd represent the probability that an adversary get the voter’s PIN and
long credential (crd), respectively. It it worth mentioning that, the two credentials,
long credential (crd) and PIN, are chosen randomly and independently in the reg-
istration phase. Hence the probability of recovering both of them, namely the full
credential, is:

Prfull.crd =Prpin×Prcrd.

A.3 The polynomial evaluation process is correct respect to the error-list. Namely, the
zero set of polynomial only contains the error list, described in the election policy
document.

A.4 The MPC protocol MPCmin is
(
γ(0,ϕ),0

)
-verifiable, meaning that if the output of

MPCmin does not correspond to its input, then this can always be detected pub-
licly.

A.5 πKgen,πShuffle,πDec are NIZK systems and πEnc is a NIZK Proof of Knowledge.

A.6 The scheduler s, the bulletin board BB, and the judge J are honest:

ϕ= hon(s)∧hon(BB)∧hon(J)∧hon(MPCmin).

Additional Note. For verifiability to hold, a minority of election trustee, the mix server
mix.s, as well as an arbitrary number of voters may be controlled by the adversary. In
particular, we do not need to introduce any additional trust assumption compared to
basic secure e-voting protocols (without coercion-resistance), such as JCJ [83].

7.9. Security Analysis 189

According to [182], a goal γ is verifiable by the judge, J, in a protocol’s run if and only
if J accepts a run r of PIN-JCJ in which the goal γ is violated (i.e., r ∉ γ) with at most
negligible probability (in the security parameter). To formally capture this notion by

Pr[(π̂P∥πA)(ℓ) 7→ ¬γ, (J : accept)]

we denote the probability that a run of the protocol along with an adversary πA (and
a security parameter ℓ) produces a run that is not in γ but in which J (nevertheless)
returns accept.

This probability should be negligible in terms of the security parameter. Hence in-
tuitively, to prove the verifiability we need to demonstrate that the probability that in a
run of PIN-JCJ more than k votes of honest voters have been manipulated but the judge
J nevertheless accepts the run is bounded:

Theorem 7.9.4 (Verifiability). Under the assumptions [A.1-6] stated above, the goal γ(ϕ)
is verifiable in the protocol ΠpinJCJ = 〈nv,Agent,Πh,cList,Γelc, fres〉 by the judge J which
run the honest program π̂J as described in Figure 7.2.

Proof. Assume that assumptions [A.1-6], as specified above hold true. Then to prove
Theorem 7.9.4, we need to show the following implication.

If the judge J outputs accept in a given protocol’s run of PIN-JCJ (in which A.[1-6]
are satisfied), then there exist (valid) dishonest choices (ci)i∈Id such that the election re-
sult equals fres(cσ(i))i∈Ih∪Id , where (ci)i∈Ih are the honest voters’ choices and σ is some
permutation. This means that, due to the specification of J Figure 7.2, each NIZKP pub-
lished on BB is valid.

Let vid be an arbitrary honest voter who submitted q valid ballots, each containing
voter choice voteid,i :

ballotListid := {ballotid,1[vote1], . . . ,ballotid,q [voteq]}

voteListid := {voteid,1, . . . ,voteid, q}.
(7.21)

Since J 7→ accept and according to the completeness property of the πballot(7.11), all
the ballots ballotid, j would pass the first verification step. We highlight that with over-
whelming probability all valid ballots in ballotListid(7.21) are cast by the voter. Because
the adversary can submit a ballot on behalf of the voter vid, but due to the assumption
A.2, the ballot would be valid with a negligible probability.

In the next step, all these ballots go through the multi-party computation algorithm,
MPCmin. Because of step 6, in figure 7.2, and the soundness property of the πMPC, the
output of the MPCmin would be some index t such that:

∀k = 1, . . . , q : 0 ≤ polyid,a(âm ,crd) ≤ polyid,a(âk ,crd) (7.22)

and since the honest voter cast at least one valid ballot (there exist some index j such
that:

∃ j ∈ [q] : polyid,a(â j ,crd) = 0

The above inequality (7.22) implies that polyid,a(âm ,crd) = 0. We now show that
ballotid,m[voteid,m] is counted in the tally phase with overwhelming probability.

In the next step, the tabulation teller, randomize the polynomial evaluation and then
applies the mix-net to the list L1 and obtain L2:

190 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

L1 =
[(
ctid = ct[polyid,a(âm +crdid)],ct′id = ct[voteid,m]

)]
id∈idSet

L1
πrandomization,πShuffle−−−−−−−−−−−−−−→ L2

L2 =
[

(ctσ(id),ct
′
σ(id)])

]
id∈idSet

(7.23)

Since the judge accepted the protocol’s run, πrandomization and the mix server’s NIZKP
for Rshuffle 8.2 are valid. Due to the soundness of πShuffle (A.5), it follows that, with over-
whelming probability, there exists some permutation σ and some index j ∈ [nv] such
that for each id ∈ idSet, we have that:

ct′id ∈ReEnc(pk,ctσ(j)).

Due to the re-encryption property of Πpke (A.4) and the bijective property of σ, we
can deduce that for each honest voter, there exists ct j in the output list L2 of mix server
such that

(ct′i ,ct′j = ct[vote j]) ∈ReEnc(L1)

where vote j ∈ voteList j , which is one of the voter’s original choices, and analogously for
the dishonest voters. More precisely, there exists some index j that σ(j) = id, which
implies the ballot containing voteid,x is now entering the decryption step.

Since the judge accepted the protocol run, the decryption trustee’s NIZKPs, πDec, is
valid. Due to the soundness ofπDec (A.5), it follows that, with overwhelming probability,
there exists sk such that (pk,sk) ∈Kgen such that:

(polyid,a(âm +crd)random,voteid,m) =Dec(sk, (ctσ(j),ct
′
σ(j))).

Because the encryption scheme is correct (A.1), and the soundness of property of
πdec the output of the decryption algorithm on input with index j : σ(j) = id would be
(0,voteid,m).

We can make the same argument as above for each honest voter; this leads to the
following conclusion:

res= fres(vote1, . . . ,votenv) : ∀i = 1, . . . ,nv : votei ∈ voteListi

which establish the verifiability property of our protocol.

7.10. Conclusion 191

FIGURE 7.2: Verification Procedure

Inputs: This procedure takes as input all public data of the
election, namely the public bulletin board, BB,

Output: accept/reject

1. Run the verification algorithm for the relation RKeyGen(see 7.3) with inputs the public key
of the election and πKgen:{

If
[
Verify(PKelection,RKeyGen,πKgen) → 0

]
Then (J 7→ reject),

If
[
Verify(PKelection,RKeyGen,πKgen) → 1

]
Then Go to the next step,

2. Run the verification algorithm for the relation Rpoly (see 7.9) for all registered voters with
inputs vid,CP,Enc(crd){

If
[
Verify

(
pp,Rpoly,vid,CP,Enc(crd),πpoly

)→ 0
]

Then (J 7→ reject),

If
[
Verify

(
pp,Rpoly,vid,CP,Enc(crd),πpoly

)→ 1
]

Then Go to the next step,

3. Run the verification algorithm for the relation (see 7.11) to check the validity of the
proofs, πballot. Same as the previous step, the judge reject the election in case

• there is a ballot with a valid proof πballot which is withdrawn,

• there is a ballot with an invalid proof counted as a legitimate ballot.

4. Run the verification algorithm for proof πrandomization with respect to relation
Rrandomization 7.16, reject if the output of the algorithm is 0. Otherwise go to the next
step.

5. Run the verification algorithm for proof πShuffle with respect to relation Rshuffle 8.2, reject
if the output of the algorithm is 0. Otherwise go to the next step.

6. In case the protocol is instantiated with multi-party computation then during the ex-
ecution of MPCmin the judge runs the judging procedure Verifympc of MPCmin, and J
outputs reject if Verifympc rejects the computation. If the protocol run the polynomial
evaluation, J needs to run the verification algorithm for the polynomial evaluation.

7. Run the verification algorithm for Rdec to verify the decryption procedure and output
reject in case any decryption proof fails.

8. If none of these situations occur, the judge J outputs accept on a distinct tape.

7.10 Conclusion

In this paper we have presented attacks and repairs on the NV12 scheme, especially,
we have also presented protocols which are resilient to human errors in the form of
PIN typos. It is interesting to notice that the digitally stored key could be combined or
replaced with a key derived from biometric data. An important future direction is to
make the error correction here so efficient that we can allow using noisy biometric data
without fuzzy extraction.

192 Chapter 7. Practical and Usable Coercion-Resistant Remote E-Voting

For the Paillier-based system that we have presented it would be natural to add the
tally system from Ordinos [184] since this is also based on Paillier encryption. Ordinos
will only reveal the winner or the ranking of the candidates in the election, and will thus
help for coercion-resistance in the case where there are candidates which expected to
only get few or no votes. Another method that could used in both protocols is the risk-
limiting tally method described in [164] which gives plausible deniability for the voter.

Finally, some socio-tehcnical research questions are:

1. Which type of PIN errors do voters do when the are in a vote setting and do not get
any feedback on the correctness of the PIN.

2. Related to this, what it the optimal PIN policy that corrects as many PIN typos
while still keeping the entropy of the PIN space sufficiently high.

3. If we do not use a smart card, or use both a smart card and key storage: how well
can voters be trained to handle, fake and hide secret keys.

193

Chapter 8

A New Technique for Deniable Vote
Updating

This chapter proposes a new e-voting system that enables voters with an intuitive mech-
anism to update their possibly coerced vote in a deniable way. What is more, our e-
voting system does not introduce any additional trust assumptions for end-to-end ver-
ifiability and vote privacy besides the standards. Moreover, we demonstrate that our
e-voting system can be instantiated efficiently for practical elections. With these prop-
erties, our e-voting system has the potential to close the gap between theory and prac-
tice in coercion-resistant e-voting.

Contents
8.1 Introduction . 194

8.2 Related work . 194

8.2.1 Our Contributions . 196

8.3 Overview of DeVoS . 196

8.3.1 Main Idea . 196

8.4 Protocol Description; Participants, Primitives and Framework 197

8.4.1 Protocol Participants . 197

8.4.2 Cryptographic Primitives . 197

8.4.3 Protocol Framework . 199

8.5 Protocol Instantiation . 201

8.5.1 Instantiation with Bilinear Groups . 202

8.5.2 Instantiation with Exponential ElGamal . 205

8.6 DeVoS; Security Properties . 208

8.6.1 Security Model . 208

8.6.2 Privacy . 209

8.6.3 Intuitive Counter-Strategy . 209

8.6.4 Coercion Threat Model . 210

8.6.5 Verifiability . 210

194 Chapter 8. A New Technique for Deniable Vote Updating

8.1 Introduction

Designing e-voting systems for practical elections that satisfy at least a basic level of se-
curity is a demanding task. On top of this, to make the system resistant against malicious
influencers who want to swing an election by coercing voters is even more challenging.
Numerous e-voting systems have been proposed to reduce the risk of coercion, many
of them achieve this by sacrificing efficiency, usability, or basic security, which are all
required for real-world elections.

In order to overcome this unsatisfying state-of-affairs, we propose a new e-voting
system which enables voters with an intuitive mechanism to update their possibly co-
erced vote in a deniable way. What is more, our e-voting system does not introduce
any additional trust assumptions for end-to-end verifiability and vote privacy besides
the standards. Moreover, we demonstrate that our e-voting system can be instantiated
efficiently for practical elections. With these properties, our e-voting system has the
potential to close the gap between theory and practice in coercion-resistant e-voting.

In what follows, we review the related work and state-of-affairs in Section 8.2. Then
in Section 8.3, we describe the main idea of DeVoS, explain why it guarantees the fea-
tures claimed, and discuss the coercion threat model we consider. Next, the complete
DeVoS protocol is presented in Section 8.4 with full technical details. In Section 8.5, we
instantiate our protocol with two different cryptosystems. Finally, we formally analyze
the security of DeVoS in Section 8.6.

8.2 Related work

Let us first recap the basic idea of coercion-resistant e-voting systems. Instead of obey-
ing the coercer, each coerced voter can run some counter-strategy in such systems. As
a result, the coerced voter can achieve her own goal (e.g., voting for her favorite can-
didate). At the same time, due to some technical mechanisms, the coercer should not
be able to distinguish whether the coerced voter followed his instructions (e.g., voted
for the coercer’s favorite candidate) or ran the counter-strategy. From a technical per-
spective, three different approaches in the literature implement this concept: fake cre-
dentials, masking, and deniable vote updating. We will briefly explain these different
approaches next.

Fake credentials are used, for example, in [168, 80, 17, 79, 97, 232], and they work as
follows. Each voter is provided with a unique and secret credential ĉ. A voter uses
ĉ to submit her vote when she is not under coercion. Otherwise, if a voter is un-
der coercion, she can create a so-called fake credential c to submit her coerced
vote. Since the voter’s fake credential is invalid, the voting authorities will secretly
remove the vote. At the same time, the fake credential c and the real one ĉ are
indistinguishable from a coercer’s perspective.

Masking choices is employed, for example, in [21, 259]. Its idea is the following one.
Each voter is provided with a unique and secret mask m̂. A voter uses m̂ to blind
her actual vote v̂ when she is not under coercion. Otherwise, if a voter is being
coerced to vote for a different choice v , then she computes a fake mask m such
that the resulting blinded vote still remains a vote for her actual choice v̂ .

Unfortunately, in both the fake credential and masking approach, the ceremonies
that voters have to run appear to be too complex for real human voters because they

8.2. Related work 195

typically require capabilities that are difficult or impossible to attain (e.g., memorizing
long, randomly-looking credentials or inputting these credentials without errors). We
refer the interested reader to [205, 179] for more details on the usability issues of fake
credentials and masking choices. Due to such drawbacks, these two concepts are likely
rendered completely ineffective to protect against coercion in real practical elections.
Achieving coercion-resistance via deniable vote updating, as described next, is more
promising.

Deniable vote updating enables each voter to overwrite her previously submitted bal-
lot, that she may have cast under coercion, such that no one else, including a pos-
sible coercer, can see whether or not the voter has subsequently updated her vote.
Among others, this technique is employed in the hybrid e-voting system used for
national elections in Estonia [154] and formerly in Norway. Here, voters can over-
write electronically cast ballots by submitting a physical ballot at the polling sta-
tion. There are also exist solutions to deniable vote updating for completely re-
mote e-voting systems, most notably [180, 197].

In an e-voting system with deniable vote updating, “the vote casting process is no
different from simpler voting systems that do not ensure coercion resistance” and “even
in case of coercion, the concept of voting again to overwrite the vote cast under coer-
cion would most probably fit into the mental models of the voters” [179]. Despite these
significant advantages, existing e-voting systems with deniable vote updating have fun-
damental restrictions. We will elaborate on this observation in what follows.

The deniable vote updating techniques proposed in [9, 196] require that the vot-
ers’ submitted ballots are secretly compared pairwise, leading to a quadratic complexity
in the number of voters. This property is undesirable for elections with medium-size
or larger electorates. More specifically, as demonstrated in [197], in an election with
180,000 voters, the solution by [9] would require more than one core year to make the
comparisons.

The only scalable e-voting systems with deniable vote updating are [180, 197]. These
techniques have in common that several indistinguishable dummy ballots hide the vot-
ers’ re-voting pattern. Unfortunately, even though [180] follows the concept of deniable
vote updating, the counter-strategy proposed in [180] is cumbersome for human voters.
If a voter in [180] wants to update a choice v that she submitted under coercion, then
she needs to memorize v , invert it, multiply the result with her truly favorite choice v̂ ,
and submit a ballot for v−1·v̂ . The procedure becomes even more complex if the coercer
asks the voter to submit several choices, each one updating the one submitted before.
It is questionable whether human voters can execute this complex counter-strategy and
thus whether [180] provides a sufficient level of coercion-resistance in practice. In con-
trast to [180], the counter-strategy voters have to run in [197] is as easy as it could pos-
sibly be. In fact, if a voter was coerced to submit a vote for v (or even a sequence of
votes), she can simply, at any later point of the submission phase, cast a vote for her
truly favorite choice v̂ (without having to memorize any previously cast a vote). On the
downside, [146] demonstrated that [197] does not provide a reasonable level of security
because there exists a single voting authority in [197] which needs to be trusted for all se-
curity properties, i.e., verifiability, privacy, and coercion-resistance. According to [146],
this security issue is intrinsic to the approach taken in [197] and could thus, if possible,
only be resolved by fundamental modifications.

196 Chapter 8. A New Technique for Deniable Vote Updating

Altogether, we can conclude that, to date, there does not exist a practically efficient
e-voting system in the literature which is provably secure and provides human voters
with a simple counter-strategy to defeat coercion.

8.2.1 Our Contributions

In order to overcome the unsatisfying state-of-affairs described in Sec. 8.2, we propose
DeVoS, the first remote e-voting system that satisfies all of the following properties:

• Voters can deniably intuitively update their votes.

• End-to-end verifiability and vote privacy are provably guaranteed without any ad-
ditional trust assumptions besides the standards.

• Large-scale real-world elections can be realized efficiently.

With the unique combination of these properties, DeVoS has the potential to close
the gap between coercion-resistant e-voting in theory and practice.

8.3 Overview of DeVoS

We describe the main idea of DeVoS, explain why it guarantees the features claimed,
and discuss the coercion threat model we consider.

8.3.1 Main Idea

In a nutshell, DeVoS works as follows; we provide full technical details in Sec. 8.4. For
each voter vi , there exists an initially empty vector listi on the public bulletin board BB

to which ciphertext/proof pairs (ct j
i ,π j

i) can be appended.1 The idea is that ct j
i encrypts

a candidate/choice and that π j
i is a zero-knowledge proof (ZKP) that ct j

i is valid in the
following sense:

1. Voter vi herself, but no one else, is permitted to append a “fresh” ciphertext ct j
i

to listi , i.e., a ciphertext which is completely unrelated to the previous ciphertexts

ct0
i , . . . ,ct j−1

i in her vector listi .

2. Each other participant is only permitted to submit a ciphertext ct j
i which contains

the same plaintext as the last ciphertext ct j−1
i in listi . Technically speaking, each

participant can only append a re-randomization of ct j−1
i to listi .

Once the submission phase has closed, the last ciphertext in vi ’s vector listi , denoted
by cti , is vi ’s input to the subsequent publicly verifiable mixing phase (that is standard).

Due to the soundness of the ZKP π
j
i , it is ensured that cti indeed contains the last vote

submitted by vi , which is necessary for end-to-end verifiability.
To achieve deniable vote-updating (and thus coercion-resistance), we exploit the

zero-knowledge property of π
j
i (which hides whether or not ct

j
i is a

re-randomization of ct j−1
i), as explained next. We employ a posting trustee PT whose

1On the contrary, in basic secure e-voting systems (e.g., Belenios [83]), each voter vi is assigned a single pair
(cti ,πi) instead of a vector listi of pairs.

8.4. Protocol Description; Participants, Primitives and Framework 197

role is to add indistinguishable noise ballots to the voters’ ballot vectors listi at certain
times. The posting trustee, PT is the authority who collects all incoming ballots and
updates the current status of all voters’ ballot vectors listi periodically. Now, instead
of publicly updating listi on the bulletin board BB immediately after a new ballot has
arrived, we introduce some (short) delay. After some specified time (e.g., 1 min) has
passed, the posting trustee PT adds noise ballots for (some of) those voters vi who did
not submit a ballot since the last update. Technically, the posting trustee PT constructs

a noise ballot (ct j
i ,π j

i) as follows: re-randomize the currently last ciphertext ct j−1
i in listi

and generate a ZKPπ j
i that ct j

i is a re-randomization of ct j−1
i . In this way, a coercer is not

able to distinguish whether vi updated her choice (after she submitted a coerced ballot)
or the posting trustee added a noise ballot because (1) “freshly” generated ciphertexts
and re-randomized ciphertext are computationally indistinguishable, and (2) the ZKP

π
j
i does not reveal whether or not ct j

i is a noise ciphertext. This property ensures that
if voter vi was coerced to submit some ciphertext ct, she may, at any later point of the
submission phase, submit a new ciphertext ct′ which contains her favorite choice and
update listi accordingly.

8.4 Protocol Description; Participants, Primitives and Framework

We present the DeVoS e-voting protocol with full technical details.

8.4.1 Protocol Participants

TheDeVoSprotocol is run among the following participants: voting authorityAuth, bul-
letin boardBB, mix server mix.s, decryption trusteeDT, posting trustee PT, and voters
v1, . . . ,vnv . Observe that all participants except for the posting trustee PT are standard in
modern secure e-voting protocols (where ballots are mixed in the tallying phase). The
role of the mix server mix.s, decryption trustee DT, and posting trustee PT can easily be
distributed; to simplify the presentation of DeVoS, we assume that a single participant
runs the respective program.

We assume all parties have authenticated channels to and from the bulletin board,
BB. This (standard) assumption ensures that all parties have the same view on the
bulletin board, and that the bulletin board can authenticate the senders of incoming
messages. To guarantee deniable vote-updating, it is also necessary to assume that the
channels between individual voter’s vid and the posting trustee PT are authenticated
and untappable.

8.4.2 Cryptographic Primitives

We start with the cryptographic primitives used in DeVoS:2

• An IND-CPA-secure public-key encryption scheme: Πpke = (Kgen,Enc,Dec). We
assume that Πpke allows for re-encryption, i.e., there exists a ppt algorithm ReEnc
which takes as input public key pk and ciphertext ct = Enc(pk,m;r) and outputs
ciphertext ct′ such that ct′ =Enc(pk,m;r′) for some (fresh) random r′.

• A one-way function f : {0,1}∗ → {0,1}∗(see 2.5).

2Instead of relying on specific primitives, the security of DeVoS (8.6) can be guaranteed under certain assump-
tions these primitives have to satisfy. We will demonstrate in Sec. 8.5 how to instantiate the generic DeVoS e-voting
protocol with highly efficient cryptographic primitives.

198 Chapter 8. A New Technique for Deniable Vote Updating

• Non-interactive zero-knowledge proof: For the protocol’s verifiability, we use a
non-interactive zero-knowledge proof system to prove correctness and plaintext
knowledge for all encrypted data, such as “Proof of Plaintext Knowledge” and “Proof
of Decryption Validity.” We may utilize either a zero-knowledge proof system or a
witness-indistinguishable proof system for this aim. Formally we will use the fol-
lowing proofs in our protocol:

1. A proof of correct key generation, i.e., a non-interactive zero-knowledge proof
(NIZKP) πKgen for proving the correctness of a public key pk w.r.t. Πpke.

The underlying relation RKeyGen is(
x = pk, w = (random,sk)

) ∈ RKeyGen ⇔ (pk,sk) =Kgen(random). (8.1)

2. A proof of correct encryption πEnc, i.e., a NIZKP of knowledge (NIZKPoK) for
proving correctness of a ciphertext ct′ w.r.t. public key pk, public verification
key vk, and (previous) ciphertext ct. The underlying relation Renc is(
x = (pk,vk,ct,ct′), w

) ∈ Renc ⇔
(
w = r : ct′ =ReEnc(pk,ct;r)

)∨(
w = (ssk,m,r) : vk= f (ssk)∧ct′ =Enc(pk,m;r)

)
.

The relation Renc is a disjunction of two statements:

(a) ct′ is a re-encryption of ct, or

(b) ct′ is a “fresh” encryption of some message m and the prover knows a
valid secret signing key ssk for public verification key vk.

3. A proof of shuffle, πShuffle concerning the cryptosystem Πpke, i.e., NIZK proof
of knowledge for the following relation Rshuffle:(

x = ((cti)n
i=1, (ct′i)n

i=1), w = ((ri)n
i=1,σ)

) ∈ Rshuffle

⇕(
σ : [n] → [n] bijective

)∧ (∀i ∈ [n] : ct′i =ReEnc(pk,ctσ(i);ri)
)
.

(8.2)

In other words, the public statement of a proof of shuffle consists of two ci-
phertext vectors (cti)n

i=1 and (ct′i)n
i=1 of the same size, and if the prover’s out-

put is valid, then this implies that the prover knows random coins (ri)n
i=1 and

a permutation σ over [n] such that ct′i is a re-encryption of ctσ(i) (using ran-
domness ri).

4. A proof of correct decryption πDec concerning Πpke, i.e., a NIZKP for the fol-
lowing relation Rdec:(

x = (pk,m,ct), w = (r,sk)
) ∈ Rdec ⇔

(
m =Dec(sk,ct)

)∧ (
pk, (r,sk)

) ∈ RKeyGen.

Additionally, we also use a NIZKP π⊥
Dec for proving that a ciphertext ct does

not decrypt to a message m ∈ cList, where cList is a certain set of plaintexts
(the set of valid choices), without revealing the actual plaintext. The respec-
tive relation R⊥

dec is(
x = (pk,ct), w = (r,sk,m)

) ∈ R⊥
dec ⇔

(
(pk,m,ct), (r,sk)

) ∈ Rdec∧m ∉ cList.

We note that, unlike the other cryptographic primitives, π⊥
Dec is most likely

not used in a real election; see the decryption phase for details.

8.4. Protocol Description; Participants, Primitives and Framework 199

For all the above relations we may utilize either a zero-knowledge proof sys-
tem or a witness-indistinguishable proof system for this aim.

• EUF-CMA-secure signature scheme: We assume that each message encrypted
by a protocol participant contains some election parameters such as the election
identifier, and to avoid cumbersome notation, we use the following convention:
Signing a message m implies that the signature is computed on the tuple (m;pp)
where the second components are public parameters of the election, including an
election identifier.

Observe that all of these primitives are standard in modern secure e-voting, except
for the disjunctive NIZKP πEnc (and the conjunctive NIZKPπ⊥

Dec) which we demonstrate
to construct using established cryptographic techniques in Sec. 8.5.

8.4.3 Protocol Framework

A protocol run consists of the following phases which we will explain in more detail
further below:

• Setup phase: The voting authority Auth generates basic parameters. All protocol
participants generate their key material and publish the respective public parts.
Each voter vid is assigned an initially empty vector listid of ciphertext/proof tuples.

• Submission phase: Voter vid pick her choice, encrypt them, prove correctness,
and submit the resulting ciphertext/proof pair as a ballot to the posting trustee
PT. Voters can re-vote to update their previously submitted choices. The post-
ing trustee PT collects incoming ballots and publishes them on the bulletin board
BB periodically, together with several indistinguishable “noise” ballots for those
voters who did not submit a ballot in the current period. Every voter vid who sub-
mitted a ballot to PT can verify whether her ballot appears in the listid published
on the bulletin board BB.

• Tallying phase (standard): The mix server mix.s takes as input the last ciphertexts
ctid from each ciphertext vector listid, re-encrypts and shuffles all of them uni-
formly at random. Finally the decryption trustee DT decrypts the mix server’s
outcome.

• Verification phase (standard): Everyone can verify the correctness of the public
material (ZKPs, complaints, etc.) published on the bulletin board, BB.

• Setup Phase. The election authority Auth determines all election parameters and
posts them on the bulletin board BB:

– Security parameter 1ℓ,

– List i⃗d of eligible voters,

– Micro submission periods t0, t1, . . . , te (t0: starting time of submission phase,
te : closing time of submission phase),

– Election ID idelection,

– The set of valid choices cList.

200 Chapter 8. A New Technique for Deniable Vote Updating

The decryption trusteeDT runs the key generation algorithm of the public-key en-
cryption scheme Πpke to generate its public/private (encryption/decryption) key
pair (pk,sk). Additionally, DT creates a NIZKP πKgen to prove the validity of pk and
posts (pk,πKgen) on the bulletin board BB.

Each voter vid chooses a secret “signing” key skid ← {0,1}ℓ uniformly at random
and computes her public verification key as pkid← f (skid), where f is the one-way
function mentioned above. The voter sends pkid to the bulletin board verifying
whether vid ∈ i⃗d. If this is the case, then BB links vid’s vector listid to pkid and
initializes it as

listid =
[
list0

id =Enc(pk,0;0),ϵ
]
.

• Voting Phase. We now describe the program run by an honest voter vid in the vot-
ing phase. We start with the program that vid runs when she is not under coercion.
In this case, the vid picks her favorite choice m ∈ cList and encrypts it under pk to
obtain

ct′ ←Enc(pk,m;r).

Next, vid reads the latest status of her vector listid, including the currently last
ciphertext ct in listid, from the bulletin board BB and uses skid, message m, and
randomness r to create a NIZKPoK πEnc for Rballot(x, w) detailed in follows:

Rballot(x, w) =True ⇐⇒ (P1(x, w1) =True)∨ (P1(x, w2) =True)

x = [
listpkid = [pkid,ct0, (ct1,π1), . . . , (ct j ,π j)],ct′

]
,

w1 = (m,r1,skid), w2 = (r2)

P1(x, w1) =True ⇐⇒ (ct′ =EncPK(m;r1))∧ (vote ∈ cList)∧PoK(skid)

P2(x, w2) =True ⇐⇒ (
ct′ =Re.EncPK(ct j ;r2)

)
Observe that vid actually proves the right term of the disjunctive relation Renc

(see above), i.e., that ct′ is a “fresh” encryption of some message m and the voter
(prover) knows a valid secret signing key skid for public verification key pkid. Af-
terwards, vid sends (ct′,πEnc) to the posting trustee PT. The voter can then verify
whether listid published by BB contains her latest submission (ct′,πEnc) after the
current micro submission period has passed.

Let us now describe an honest voter’s program, i.e., the voter’s counter-strategy,
when she is under coercion. This counter-strategy is straightforward in DeVoS:
wait until the coercer has left and then execute the same program that you run
when you are not under coercion (see above), or vote again even more concisely.

We now describe the program of the posting trustee PT. Assume that we are in the
micro submission period tl . For each incoming ballot (ct′,πEnc) by some authen-
ticated voter vid, the posting trustee, verifies the correctness of (ct′,πEnc) w.r.t. the
latest status of listid published onBB. If the ballot is not correct or vid has already
sent a ballot in the current period, tl , thenPT ignores the ballot. Otherwise, PT in-
ternally adds (ct′,πEnc) to listid, i.e., updates listid accordingly. Once period tl has
closed, the posting trustee PT internally adds a “noise” ballot, i.e., a re-encryption
ct′ of the last ciphertext ct plus a NIZKP πEnc, to the ballot vector listid of each
voter vid who did not submit a (valid) ballot during tl . The posting trustee PT

8.5. Protocol Instantiation 201

then sends the latest status of all listid to the bulletin board BB, which updates its
public content accordingly.

• Tally Phase. This part is essentially standard: the final ciphertexts are first shuf-
fled and then decrypted, both in a publicly verifiable way. More precisely, after the
submission phase has closed, mix server mix.s reads all vectors listid from the bul-
letin board and verifies their correctness (ZKPs etc.). If one of these vectors is not
correct, then mix.s aborts. Otherwise, mix.s chooses a permutation σ uniformly
at random over [nv], extracts the last ciphertext ctid from each vector listid, then
shuffles and re-encrypts ctid into

ct′id←ReEnc(pk,ctσ(i))

Eventually, mix.s creates a NIZKPπShuffle for proving that the resulting shuffled and
re-encrypted ciphertext vector list′ was generated correctly (without revealing the
actual links between input and output ciphertexts) and sends (list′,πShuffle) to the
bulletin board BB.

Afterwards, the decryption trustee DT reads (list′,πShuffle) from the bulletin board
and verifies its correctness. If πShuffle is not correct, then DT aborts. Otherwise,
DT uses its secret key sk to decrypt each ciphertext ct′ ∈ list′ into m′. If m′ is a valid
choice, i.e., m′ ∈ cList, then DT creates a NIZKP πDec for proving that it decrypted
ct′ correctly (in practice, these individual proofs would be batched for efficiency
reasons), and sends the result to the bulletin board BB. Otherwise, if m′ ∉ cList,
thenDT creates a NIZKPπ⊥

Dec for proving that ct′ decrypted to an invalid message,
and publishes π⊥

Dec, without revealing plaintext m′. The reason why DT must not
publish invalid messages is to protect against forced abstention. Otherwise, a co-
ercer could instruct a voter to submit a “vote” for some random invalid m′. In
this way, the coerced voter would effectively abstain from voting and the coercer
could check whether the voter obeyed by verifying whether m′ appears in the fi-
nal result. An alternative protection against forced abstention to the one chosen
in DeVoS could be to extend πEnc such that it also proves that the encrypted mes-
sage belongs to cList. We did not follow this approach because the efficiency of the
submission phase would then depend on the complexity of cList, which would be
particularly undesirable in DeVoS where πEnc is computed often. We expect that
in real election generating π⊥

Dec will not be necessary; the mere existence of π⊥
Dec

prevents a possible coercer from executing the aforementioned forced abstention
attack. The final list of plaintexts m⃗′ is supposed to contain all voters’ choices m⃗ in
random order.

• Public Verification Phase. In this phase, every participant, including the voters
or external observers, can verify the correctness of the previous phases, particu-
larly the correctness of all NIZKPs published during the setup, voting, and tallying
phase.

8.5 Protocol Instantiation

This section provides two instantiations of the DeVoSprotocol with concrete crypto-
graphic primitives. The ElGamal cryptosystem is used in both protocols as underlying
public key encryption scheme, although the proof systems are different.

202 Chapter 8. A New Technique for Deniable Vote Updating

We stress that we explain only the basic building blocks and their algorithm and sup-
press some details about ballot integrity and non-malleability from the zero-knowledge
proofs, e.g. the inclusion of election identifiers and the correct form of the Fiat-Shamir
transformations.

8.5.1 Instantiation with Bilinear Groups

The first instantiation relies on the standard threshold variant of ElGamal cryptosystem
over bilinear map (See 1) where its security is based on the hardness of the SXDH as-
sumption 8 and the Groth-Sahai NIWI-proof system [143].

The main point of using those primitives in this instantiation is that, ElGamal is a ho-
momorphic encryption scheme that can be efficiently implemented in a bilinear group.
A bilinear map allows us to do the disjunction proof with the efficient NIWI-proof sys-
tem. We stress that instead of the standard ElGamal encryption Scheme 2.7.2.1 we use
the following version:

Definition 49 (ElGamal Encryption Scheme in Bilinear Setting). Considering the group
generator

G = (p,G1,G2, g1, g2,e,GT) ←GroupGen(1λ),

we define ElGamal encryption scheme,ΠElGamal = 〈Kgen,Enc,Dec〉 for message spaceM=
Zp , ciphertext space, C =G2

1 as follow:

• Key Generation:

1. Run GroupGen(1ℓ) to generate G = (p,G1,G2, g1, g2,e,GT).

2. Select a random integer x from Zp .

3. Set h1 = g x
1 .

4. Set pk= (G1, p, g1,h1) and skElGamal = x.

5. Return Key= (pk,sk).

• Encryption: For message m ∈Zp :

1. Select a random number random ∈Zp .

2. Set the ciphertext CT= (g random
1 ,hrandom

1 · g m
1)

3. Return CT.

• Decryption: For ciphertext CT= (u, v) ∈G×G:

1. Compute the discrete logarithm of g m′ = logg1
(u−sk · v).

2. Return m′.

Theorem 8.5.1. The SXDH assumption. 8 results in the semantic security of the above
version of ElGamal encryption.

As we show in 2.7.2.1 the ElGamal cryptosystem allows re-encryption.

• IND-CPA-secure PKE scheme Πpke: We instantiate this central primitive with El-
Gamal over bilinear setting G = (p,G1,G2, g1, g2,e,GT) ← GroupGen(1ℓ) as defined
above.

8.5. Protocol Instantiation 203

• NIZKP of correct key generation πKgen:

RKeyGen = {(x, w) : x = (g1,h1), w ,h1 = g w
1 }

Since g1 is a generator of group G1, for any h1 ∈ G1 there exist some u such that
(g ,h) ∈ RKeyGen. In particular, we do not need a NIZKP because we can simply
check whether g1 and h1 are group members and g1 is a generator of G1.

• One-way function f : We choose modular exponentiation in G2 concerning g2, i.e.,
f : Zp 7→G2 with x 7→ g x

2 .

• NIZKPoK of correct encryptionπEnc: The specific relation to be proven by the voter
vid with key pair (pkv,skv) = (hv = g xv

2 , xv) is:

Rballot =
{
(x, w) =

(
x = (

ct= (u, v),ct′ = (u′, v ′),G,h1,hv
)
, w = (r,m, xv)

)
:

(hv = g xv
2 ,u′ = g r, v ′ = hr

1 · g m
1)∨ (u′ = u · g r

1 , v ′ = v ·hr
1)

}
.

• NIZKPoK of correct shuffling πShuffle: Since there exist different options in the lit-
erature to instantiate this primitive for ElGamal PKE (e.g., [246, 145]), we do not
single any of them out.

• NIZKP of correct decryption πDec and NIZKP of encryption to invalid message
π⊥
Dec: We describe specific NIZKPs in App. 8.5.2.2.

8.5.1.1 NIWI Proof Systems for DeVoS

We recall that in the voting phase the voter or posting trustee must provide the proof
related to the Rballot 8.4.3. Now considering the Groth-Sahai proof system for relation
RGS 8.5.1.1:

RGS = {
(x, w) :

x =Eq ∈GSEq,

w = ({ui } : ui ∈ (G1 ∪G2,GT)

Eq[w] =Eq[{gi }] =True}
the relation Rballot has the following form:

Rballot =
{

(x, (w1, w1)) :

x = (
pki , listpki = [ballot0, (ballot1,π1), . . . , (ballot j−1,π j−1)],ballot j

)
,

w1 = (m,r,ski), w2 = r2,(
Eqvote.validity[w1])∧EqfreshVote[w1]

)∨EqreEncVote[w2]
)
=True;}

(8.3)

We now describe πballot for fresh-vote, re-Encrypt vote and the vote’s validity (the vote is
in the list of the candidates) by describing each equation.

Equation Description.

204 Chapter 8. A New Technique for Deniable Vote Updating

1. EqfreshVote: Validity of a fresh vote from the voter,

vid = (pki d = hid,skid = xid)

as describe in 8.3. The proof for this relation can be generated by RGS concerning
the following equation:

Variables: X = g r1
1 ,Y = g r1

2 ,Hid = hr1
id,H∗

id = g xid
2 ,M1 = g m

1

EqfreshVote :


e(u, g2) = e(g1,Y) = e(X , g2)

e(v , g2) = e(Hid, g2) ·e(M1, g2) = e(hid,Y) · (M1, g2)

e(hid, g2) = e(g1,H∗)

(8.4)

2. Validity of a re-encrypt vote as described in 8.3. The proof for this relation can be
generated by RGS concerning the following equation:

Variables: X ∗ = g r∗
1 ,Y∗ = g r∗

2 ,H∗
id = hr∗

id

EqreEncVote :


e(ui−1, g2) ·e(X ∗, g2) = e(ui , g2)

e(vi−1, g2) ·e(H∗
id, g2) = e(vi , g2)

e(X ∗, g2) = e(g1,Y∗)

e(H∗
id, g2) = e(hid,Y∗)

(8.5)

3. Validity of voter choice: the encrypted vote is in the candidate list. The proof for
this relation can be generated by RGS with respect to the following equation:

Variables: X = g r1
1 ,Y = g r1

2 ,Hid = hr1
id

Mi = g mi

1 : i = 1,2, . . . ,k,M′ = g m
2

Eqvote.validity :


e(v j , g2) = e(Hid, g2) ·e(M1, g2) = e(h2,Y) · (M1, g2)

e(Mk , g2) ·e(Mk−1, g2)p1 · . . . ·e(M1, g2)pk−1 ·e(g1, g2)k = 1GT

∀i = 1,2, . . . ,k : e(Mi , g2) ·e(Mi−1,M′)−1 = 1GT

e(M, g2) = e(g1,M′)
(8.6)

Correctness of the Equations. Now we show that each equation, is equivalent to the
related relation of the system of equation and the relation R, :

1. Validity of the Vote: Let’s consider candidate list as a set of integers less than p.
Then, to prove that m ∈CandidateList it would be enough if we prove m is the root
of the following publicly known polynomial:

PolycList(x) = (x − c1) · (x − c2) · . . . (x − ck) = xk +p1xx−1 + . . .+pk ,

Hence, if we define variables Mi = g mi
, the equation 8.6 proves that m is one of

the zeros of the polynomial and hence it is a valid choice.

2. Correctness of Fresh-vote and voter signature: A valid proof for the system of equa-
tion EqfreshVote claims that values yi , xi ,mi ,h exist, such that X = g xi

1 ,Y = g yi
2 For

8.5. Protocol Instantiation 205

simplicity we consider the equation without index j . A valid proof for the system
of equation EqfreshVote claims that there exists values r, y , x,m such that

u = g r
1,X = g x

1 ,Y = g y
2 ,M= g m

1 ,H∗ = g xid
2 .

Then we have:

1. e(u, g2) = e(g1,Y) = e(X , g2) :

e(g r
1, g2) = e(g1, g y

2) = e(g x
1 , g2) =⇒ r= x = y

2. e(v , g2) = e(hid,Y) ·e(M1, g2),

e(v , g2) = e(hid, g r
2) ·e(g m

1 , g2) =⇒ v = hr
id · g m

1

3. e(hid, g2) = e(g1,H∗) =⇒ H∗ = g xid
2

(8.7)

The above computation shows that u = g r, v = hr
id·g m

1 which prove the well-formedness
of the encryption and it also shows that the voter knows the value xid such that
hid = g xid

1 :

8.5.2 Instantiation with Exponential ElGamal

We propose the following instantiation of the abstract DeVoS protocol (Sec. 8.4):

• IND-CPA-secure PKE scheme Πpke: We instantiate this central primitive with ex-
ponential ElGamal PKE [112]. If the decisional Diffie-Hellman (DDH)(see 5) prob-
lem is hard relative to G, then (exponential) ElGamal is IND-CPA-secure. To re-
randomize an ElGamal ciphertext (u, v), choose s ∈ Zp uniformly at random and
return (u′, v ′) ← (u · g s , v ·hs).

• NIZKP of correct key generation πKgen:

RKeyGen = {(x, w) : x = (g ,h), w = u,h = g u}

Since g is a generator of group G, for any h ∈G there exist some u such that (g ,h) ∈
RKeyGen. In particular, we do not need a NIZKP because we can simply check
whether g and h are group members and g is a generator of G.

• One-way function f : We choose modular exponentiation in G with respect to g ,
i.e., f : Zp →Gwith x 7→ g x .

• NIZKPoK of correct encryptionπEnc: The specific relation to be proven by the voter
v with key pair (pkv ,skv) = (hv = g uv ,uv) is:

Renc =
{
(x, w) =

(
x = (

ct= (u, v),ct′ = (u′, v ′), g ,h,hv
)
, w = (r ,m,uv)

)
:

(hv = g uv ,u′ = g r , v ′ = hr · g m)∨ (u′ = u · g r , v ′ = v ·hr)
}
.

Our proof system is based on Schnorr’s signature [233] and existing techniques for
proving relations between group elements [77, 68] implemented in bilinear groups
of size 256 bits.

• NIZKPoK of correct shuffling πShuffle: Since there exist different options in the lit-
erature to instantiate this primitive for ElGamal PKE (e.g., [246, 145]), we do not
single one of them out.

206 Chapter 8. A New Technique for Deniable Vote Updating

• NIZKP of correct decryption πDec and NIZKP of encryption to invalid message
π⊥
Dec: We describe specific NIZKPs in App. 8.5.2.2.

8.5.2.1 Non-Interactive Sigma-Protocol

Considering the hardness of the DDH assumption(see 5) in group G, the following pro-
tocol is a zero-knowledge proof of knowledge proof system for Renc :

FIGURE 8.1: Non-Interactive Sigma protocol for Renc DDH-Relation

• Setting: G = (G , g , p) :G= 〈g 〉; |G| = p,

(x, w) : x = (
g ,h,hi ,ct1 = (u1, v1),ct2 = (u2, v2)

)
, w = (αi ,r ,m)

Renc = {(x, w) :

(hi = gαi ,u2 = g r , v2 = hr g m)

∨(u2 = u1g r , v2 = v1hr)}

• Protocol: 〈Prove(x, w),Verify(x)〉
Prover

1. Choose e2, z, a1, a2, a3 ←Zp

2. Compute:

ū = g a1 , v̄ = ha1 g a2 ,

h̄i = g a3 ,

u∗ = g z2 (u2 ·u−1
1)e2 ,

v∗ = hz2 (v2 · v−1
1)e2

Set:

Replaced with Verifier challenge
e = hash(ū, v̄ , h̄i ,u∗, v∗;nonce),

e1 = e −e2; z1 = a1 −e1r , z2 = a2 −e1m, z3 = a3 −e1α

Prover sends π= (e1,e2, z1, z2, z3, z) to the verifier

Prove
π=(e1,e2,z1,z2,z3,z)−−−−−−−−−−−−−→Verify

Verification

1. Compute: U1 = g z1 u2
e1 ·u−e1

1 ,V1 = hz1 · ve1
2 v−e1

1 ,

U2 = g z (u2 ·u1)e2 ,V2 = hz (v2 · v1)e2

2. Set e ′ = hash(U1,V1,hi ,U2,V2)

3. Verify(x,π) accepts if and only if e ′ = e1 +e2

8.5.2.2 Decryption Trustee Proofs

We describe the standard techniques for proving the correct decryption and proving
that the encrypted value does not belong to a pre-defined set of values.

8.5. Protocol Instantiation 207

Proof of correct decryption, πDec. The goal is to prove that the ciphertext ct= (u, v) can
be decrypted to m ∈ cList. If this is the case, the decryption trusteeDT computes v̄ = usk

and publishes v̄ along with a NIZKPoK proof πDec1 for the following relation:

RDec1 = {(x = (g ,pk, (u, v̄)), w = sk) : (pk, v̄) = (g sk,usk)} (8.8)

The verifier verifies πDec1 and checks whether v(v̄)−1 =? g m .
Note that RKeyGen in ElGamal cryptosystems can be easily checked. As long as the

public key is a member of the underlying group other than the identity element it im-
plies the correctness of the key.

Proof of invalid plaintext, π⊥
Dec. The goal is to prove that the ciphertext ct= (u, v) can-

not be decrypted to a message in cList, i.e., it encrypts some m′ ̸∈ cList. We note that
the technique for proving the correct decryption presented above cannot be used here,
since it reveals the plaintext (in the form of g m). The verifier should only learn that the
ciphertext cannot be decrypted to any value from the set cList and nothing else. We first
show a technique for proving that the ciphertext cannot be decrypted to some m′ and
then extend it to the whole set cList. The technique is a slight modification of Plaintext
Equivalence Test (PET) [162], the latter is used in a distributed setting and allows parties
to prove that a pair of ElGamal ciphertexts encrypt the same plaintext as long as at least
one party is honest.

To prove that (u, v) cannot be decrypted to m′, the prover does the following:

1. Pick a random value r ←Z∗
p and compute

v̄ = v · g−m′
, u∗ = ur , v∗ = v̄ r .

Then set x1 = ((u, v̄), (u∗, v∗)), w1 = r and create a NIZKPoK proof πσ =πσ(x1, w1).

2. Compute v̄∗ = (u∗)sk, then set

x2 =
(
g ,pk, (u∗, v̄∗)

)
, w2 = sk

and create a decryption proof πDec1 = πDec1(x2, w2) for the relation RDec1 (Equa-
tion (8.8)).

3. Send (m′,u∗, v∗, v̄∗), along with πDec1 and πσ to the verifier.

The verifier recomputes v̄ = v/g m′
, verifies the proofsπσ andπDec1 , then accepts the

proof of invalid plaintext if v∗ ̸= v̄∗.
Let us analyze the above proof system for two cases: 1) the ciphertext decrypts to

m′, and 2) the ciphertext does not decrypt to m′. If (u, v) decrypts to m′, then we have
that (v/g m′

)r cancels out the message term and (u∗, v∗) is encryption of the identity. It
follows that v∗ = v̄∗. If (u, v) does not decrypt to m′, then (u, v/g m′

) will be an encryp-
tion of some message m′′ = m−m′ ̸= 0. Raising it to r will yield an encryption (u∗, v∗) of
m∗ = m′′ ·r . It follows that v∗ ̸= v̄ , and the verifier will learn g m∗ = g m′′·r . Since r is fresh
and kept secret, it effectively masks the original plaintext encrypted in (u, v).

To prove that a ciphertext (u, v) does not decrypt to any message from cList, the de-
cryption trustee DT proves individually for each m′ ∈ cList that the ciphertext does not
decrypt to m′ using the technique above.

208 Chapter 8. A New Technique for Deniable Vote Updating

8.5.2.3 Practical Efficiency

In order to evaluate DeVoS’s efficiency in handling large-scale real elections, we imple-
mented the system and here we briefly discuss the protocol’s efficiency.3

Since all phases of DeVoS except for the submission phase are essentially standard,
we focus on the latter phase to demonstrate DeVoS’ practical efficiency. To this end,
we implemented the ZKP that both the voters and the posting trustee compute to prove
that a submitted ballot is valid. Our benchmarks show that this ZKP has a small size and
can be computed quickly, which is important because the posting trustee PT computes
such a ZKP for each noise ballot that it publishes.

Interestingly, we can further optimize the efficiency ofPT and using techniques from
the field of differential privacy (DP), we prove thatDeVoS still achieves a reasonable level
of deniable vote updating when PT adds dummy ballots for only a fraction of those
voters who did not submit a ballot in a given micro submission phase.

8.6 DeVoS; Security Properties

In this part, we conduct a security analysis on our scheme by providing the security
model, stating the security criteria we wish to guarantee, and determining the security
assumptions needed to support them.

8.6.1 Security Model

In our protocol, we assume the following trust assumptions:

1. The adversary is computationally bounded.

2. In case of using the threshold cryptosystem we require that the majority of the
election trustee and also the majority of the supervised registrar are trustworthy.
Namely, the adversary cannot corrupt a threshold set of election trustee. In case
of single party, we assume the election trustee and the registrar are honest.

3. At least one mix server is honest.

4. There is a point in the voting phase, where the adversary cannot control the voter.

5. Voter supporting device, vsd cannot be tampered with or compromised.

6. Voter’s vsd does not leak the voter’s private credentials to the adversary.

7. The adversary cannot control the voter’s computer or voter’s device. considering
the Benaloh challenges in the protocol this assumption will reduce to: The ad-
versary cannot control the voting and the verification environments simultane-
ously [206].

8. The channel to the ballot boxes is anonymous.

9. The voter’s credential is not leaked to the adversary without voter’s knowledge.

3Due to the fact that the author of this thesis was not the primary contributor to this part, we only refer to the
subject and will not give the details in this manuscript

8.6. DeVoS; Security Properties 209

To evaluate the security properties, i.e., public end-to-end verifiability and vote privacy
that our scheme provides, we perform an evaluation. We refer to 6.2.1 for the formal
verifiability theorem, which is proof based on the KTV framework. Here we briefly elab-
orate on the privacy.4

Recall that the purpose of PT is to add some noise to the set of submitted ballots
which hides the voters’ re-voting pattern. This means that we trust PT for coercion-
resistance. We stress that, unlike other coercion-resistant e-voting protocols (e.g., VoteA-
gain [197]), DeVoS does not introduce any additional trust assumptions for end-to-end
verifiability and vote privacy.

To see why this important feature of DeVoS holds true, recall that any noise cipher-

text ct j
i contains a vote for the same choice as ct j−1

i does because, due to the soundness

of π j
i , only vi herself can submit a “fresh” ciphertext ct j

i that is not a re-randomization of

ct
j−1
i . Particularly, even if the posting trusteePT is malicious, the vote contained in ct

j−1
i

cannot be tampered with undetectably. Therefore, DeVoS does not introduce any addi-
tional trust assumptions for end-to-end verifiability (Theorem 8.6.2) compared to basic
modern secure e-voting systems (e.g., Helios [10]). The same holds true for vote privacy,
essentially because the program of PT does not need any secret inputs and could, in
principle, be executed by any external party.

8.6.2 Privacy

We analyze the vote privacy of DeVoS based on the KTV framework(see 6.2.1). We show
that the privacy level of DeVoS is ideal under the following (minimal) assumptions:

A.1 The PKE scheme with re-randomization is IND-CPA-secure.

A.2 The function f : {0,1}∗ → {0,1}∗ is one-way.

A.3 πKgen,πShuffle,πDec,π f
Dec

,π⊥
Dec are NIZKs and πEnc is a NIZKPoK.

A.4 The scheduler s, the bulletin boardBB, the mix servermix.s, the decryption trustee
DT, and at least nhonest

v voters are honest.

and we prove the following theorem:

Theorem 8.6.1 (Privacy). Under the assumptions A.1 to A.4 stated above, the voting pro-
tocol 〈nv,Agent,Πh,cList,Γelc, fres〉 PDeVoS = 〈nv,Agent,Πh,cList,Γelc, fres〉 achieves a pri-
vacy level of δideal

(nhonest
v ,C,µ)

.4

8.6.3 Intuitive Counter-Strategy

As described in Sec. 8.1, in a coercion-resistant e-voting system, each coerced voter has
the option to run some counter-strategy instead of obeying the coercer. Similarly to
VoteAgain [197], the counter-strategy voters have to run in DeVoS is as simple as pos-
sible: wait until the coercer has left and then execute the same program that you run
when you are not under coercion, i.e., submit a ballot for your favorite choice. Or, even
more concisely: vote again.

An extensive usability study of this counter-strategy, which would have been clearly
beyond the scope of this cryptographic paper, will be interesting future work.

4Due to the fact that the author of this thesis was not the primary contributor to this part, we only refer to the
subject and will not give the details in this manuscript

210 Chapter 8. A New Technique for Deniable Vote Updating

8.6.4 Coercion Threat Model

We consider an “over-the-shoulder” coercer [79] who can be physically present at a
voter’s location at some point of the submission phase. The coercer can instruct the
voter to submit a vote for a particular candidate using the voting program; the coercer
can check on-site whether the voter is following his instructions.

In order to secretly overwrite the coerced vote, we assume that the voter can submit a
new ballot after the coercer has left the voter’s place before the submission phase closes.
Although the latter assumption may not hold true for all coerced voters, it is realistic to
assume that most coerced voters can submit a new vote after coercion. In this way, the
malicious impact of a coercer on the election result remains limited.

We note that all e-voting systems with deniable vote updating (e.g., [180, 197]) as-
sume that voters have the opportunity to submit an uncoerced vote at some point of
the submission phase.

We do not consider a coercer who can make a voter run a malicious script on the
voting device because (we conjecture that) coercion-resistance is impossible in such
cases. Related to this restriction, we assume that a coerced voter does not reveal her
private credentials to the coercer; if the coercer could learn these credentials, then they
could easily vote on behalf of the voter.

In order to realize this assumption in practice, one could generate and store the
credential in a trusted execution environment (TEE) so that the voter cannot read her
credential, even if she wanted to. Then of course, the coercer could take the device
on which the credential is stored with him when he leaves the voter’s place. However,
this strategy would leave some physical evidence which poses a significant risk from a
potential coercer’s point of view, particularly when facing severe penal consequences.
Furthermore, collecting secret credentials physically requires much time or many re-
sources. We therefore conjecture that the risk of being caught collecting sufficiently
many voting devices to significantly change the election result would not be worth the
effect.

We assume that a possible coercer is not able to corrupt the posting trustee PT be-
cause he could otherwise easily see whether or not a voter updated her coerced vote.
Furthermore, we make the minimal assumption that all parties who we trust for vote
privacy (namely, the mixing authorities) do not collude with a possible coercer; other-
wise, the coercer could easily link a coerced voter’s submitted ballot with her decrypted
vote in the final result.

8.6.5 Verifiability

In this section, we formally evaluate the DeVoS protocol’s verifiability. To this end we
use the general KTV computational model and adopt the verifiability definition with
the goal γ(ϕ) proposed in [85] presented in Section 6.3.1.

Our primary reason for choosing this model for the verification analysis is that it is
suitable for our protocol. There are no explicit assumptions regarding the result func-
tion and re-voting policy.

In our model judge, J, an honest agent, is in charge of the verification procedure,
and he executes the honest program π̂J whenever triggered by the scheduler s. At the
end of the verification procedure, J outputs accept or reject through his channel.

In a nutshell, in a DeVoS protocol run, judge J takes as input solely public infor-
mation (e.g., the Zero-Knowledge proofs in DeVoS published on the bulletin board)

8.6. DeVoS; Security Properties 211

and then performs certain checks. If all checks succeed, the judge accepts the proto-
col run, and rejects it otherwise. Precisely judge J conducts the program π̂J as defined
in Figure 8.2.

Verifiability Assumption. We prove the verifiability of DeVoS under the following as-
sumptions:

A.1 The PKE scheme E with re-randomization is correct (for verifiability, IND-CPA-
security is not needed).

A.2 The function f : {0,1}∗ → {0,1}∗ is one-way.

A.3 πKgen,πShuffle,πDec,π⊥
Dec are NIP systems (for verifiability, ZK is not needed) and

πEnc is a NIZKP.

A.4 The scheduler s, the bulletin board BB, and judge J are honest:

A.5 πKgen,πShuffle,πDec are NIZK systems and πEnc is a NIZK Proof of knowledge.

A.6 The scheduler s, the bulletin board BB, and judge J are honest:

ϕ= hon(s)∧hon(BB)∧hon(J).

Additional Note. Note that, for verifiability to hold, the posting trustee PT, the mix
server mix.s, the decryption trustee DT, as well as an arbitrary number of voters may
be controlled by the adversary. In particular, we do not need to introduce any addi-
tional trust assumption compared to basic secure e-voting protocols (without coercion-
resistance), such as Belenios [83].

The verification procedureJ ofDeVoS essentially involves checking the NIZKPs pub-
lished on the bulletin board BB: if one of these checks fails, the protocol run and hence
the result are rejected. Now, the following theorem states that the probability that in a
run of DeVoS an honest voter’s vote has been dropped or manipulated if ϕ holds true
(i.e., γ(ϕ) is broken) but the protocol run is nevertheless accepted by J is negligible.

Theorem 8.6.2 (Verifiability). Under the assumptions (A.1-6) stated above, the goal γ(ϕ)
is verifiable in the protocol PDeVoS(nv,cList,µ) by the judge J.

212 Chapter 8. A New Technique for Deniable Vote Updating

FIGURE 8.2: Verification Procedure

Inputs: This procedure takes as input all public data of the election,
namely the public bulletin board, BB,

Output: accept/reject

1. Run the verification algorithm for the relation RKeyGen(see 7.3) with inputs the public key
of the election and πKgen:{

If
[
Verify(PKelection,RKeyGen,πKgen) → 0

]
Then (J 7→ reject),

If
[
Verify(PKelection,RKeyGen,πKgen) → 1

]
Then Go to the next step,

2. Check the validity of the signature for each ballot. If one of the following two events
occurs during the tally phase, the judge will reject the election:

• a ballot with a valid signature is withdrawn,

• a ballot with an invalid signature is counted as a legitimate ballot.

3. Run the verification algorithm for the relation Rballot(see 8.4.3) to check the validity of
the proofs, πballot. As in the previous step, the judge rejects the election in case

• there is a ballot with a valid proof πballot is withdrawn,

• there is a ballot with invalid proof counted as a legitimate ballot.

4. Run the verification algorithm for proof πShuffle with respect to relation Rshuffle 8.2, reject
if the algorithm’s output is 0. Otherwise go to the next step.

5. Run the verification algorithm for Rdec to verify the decryption procedure and output
reject in case any decryption proof fails.

6. If none of these situations occurs, judge J outputs accept on a distinct tape.

According to [182], a goal γ is verifiable by the judge, J, in a protocol’s run if and only
if J accepts a run r of DeVoS in which the goal γ is violated (i.e., r ∉ γ) with at most
negligible probability (in the security parameter). To formally capture this notion by

Pr[(π̂P∥πA)(ℓ) 7→ ¬γ, (J : accept)]

we denote the probability that a run of the protocol along with an adversary πA (and
a security parameter ℓ) produces a run that is not in γ but in which J (nevertheless)
returns accept.

This probability should be negligible in terms of the security parameter. Hence in-
tuitively, to prove the verifiability, we need to demonstrate that the probability that in a
run of DeVoS , more than k votes of honest voters have been manipulated, but judge J,
nevertheless, accepts the run is bounded:

Proof. Assume that assumptions [A.1-4], as specified in Sec. 6.3.1, hold true. Then to
prove Theorem 8.6.2, we need to show the following implication.

8.6. DeVoS; Security Properties 213

If the judge J outputs accept in a given protocol run of DeVoS (in which[A.1-4]) are
satisfied), then there exist (valid) dishonest choices (voteid)i∈Id such that the election re-
sult equals (cσ(i))i∈Ih∪Id , where (voteid)i∈Ih are the honest voters’ choices and σ is some
permutation.

This means that, due to the specification of J Figure 8.2, each NIZKP published on
BB is valid.

Assume that we are in a run r of DeVoS in which the J outputs accept in proce-
dure 8.2. Then, due to the specification of J, each NIZKP published on BB is valid.

Let vid be an arbitrary honest voter who chose voteid and thus submitted ballot
(ct′,πEnc) where ct′ ∈ Enc(pk,voteid). Let ct′′ be ciphertext appended by the posting
trustee PT to vid’s vector listi behind ct′ (if any). Since each NIZKP is valid, due to the
soundness of πEnc (A.3), it follows that

(1) ct′′ ∈Enc(pk,c∗) for some c∗, or

(2) ct′′ ∈ReEnc(pk,ct′)

holds true. In case (1), due to the knowledge soundness property of πEnc and the fact
that PT posted a valid proof for ct′′, it follows that PT knows a witness (sskid,c,r) for the
relation

(vki = f (sskid))∧ (ct′′ =Enc(pk,c∗;r))∧ (c∗ ∈ cList).

Since vid is honest, there exist two possibilities for PT to learn sskid:

(1) extracting sskid from vki = f (sskid) , or

(2) extracting sskid from vid’s NIZKP πEnc for ct′.

Due to the one-way property of f (A.2) as well as the ZK property ofπEnc (assumption
(V3)), we can deduce that case (1) can occur in at most a negligible set of protocol runs
of DeVoS. Therefore, with overwhelming probability in the security parameter ℓ, we
find that case (2) occurs. By the re-randomization property ofΠpke (assumption (V1)), it
therefore follows via induction that the last ciphertext cti in listi , which is vid’s input to
the subsequent tallying phase, encrypts vid’s choice, i.e., cti ∈Enc(pk,voteid).

Let vid be an arbitrary dishonest voter and let cti be the last ciphertext in listi . Due
to the soundness of πEnc (assumption (V3)), there exist two possible cases:

(1) cti is a re-encryption of the previous ciphertext, or

(2) cti is a fresh encryption of some voteid ∈ cList.
In case (1), we can again distinguish between the same cases for the previous ciphertext,
and so on. Due to the re-encryption property of Πpke (assumption A.1), it therefore
follows that cti ∈Enc(pk,voteid) for some voteid ∈ cList.

From what we have shown above, we can deduce that (with overwhelming proba-
bility) the input to the tallying phase consists of ciphertexts (cti)i∈Ih∪Id , where for each
i ∈ Ih the respective ciphertext cti encrypts vid’s intended choice voteid, and where for
each i ∈ Id the respective ciphertext cti encrypts some voteid.

In the next step in the tally phase, mix-nets shuffle the list L1 contains valid ballots
on the bulletin board and outputs the second list L2 along with the proof of shuffle,
πShuffle. Since the judge accepted the protocol run, the mix server’s NIZKP πShuffle, (step
4 in Figure 8.2) is valid. Due to the soundness of πShuffle (A.3), it follows that (with over-
whelming probability) there exists some permutation σ such that for each i ∈ [nv], we

214 Chapter 8. A New Technique for Deniable Vote Updating

have that ct′i ∈ReEnc(pk,ctσ(i)). Due to the re-encryption property of Πpke (A.1) and the
bijective property of σ, we can deduce that for each honest voter vid, there exists ct′j
in the output L2 of mix server mix.s such that ct j ∈ Enc(pk,voteid), where voteid is vid’s
original choice; analogously for the dishonest voters.

Since the judge accepted the protocol run, the decryption trustee’s NIZKPs πDec and

π
f
Dec

(if any) are valid (Step 5 in 8.2). Due to the soundness of πDec and π f
Dec

(A.3), it fol-
lows that (with overwhelming probability) there exists sk such that (pk,sk) ∈ Kgen and
[m j] j∈[nv] =Dec(sk,L2) and m j ∈ cList for each index j in the list L2. Because the encryp-
tion scheme is correct (A.1), we can eventually conclude that there exist valid choices
voteid (i ∈ I ′d ⊆ Id) and a permutation σ such that res= (cσ(i))i∈Ih∪I ′d

,

215

Chapter 9

Risk-Limiting Tallies

Consider an election in where some candidates receive few or no votes, as fre-
quently occurs in real elections. As an example, consider a first-past-the-post
Student Rep Election with four candidates A, B, and C, D, with popularity rat-
ings of 49.9%,49.9%,0.1% and 0.1%, respectively. C and D have a negligible
chance of winning and A and B have a high but equal chance of the other.
Consider the following scenario: your boss, or someone with the power to pe-
nalize you, would ask you to vote for D, the candidate that no one has likely
voted for, but your preferred candidate is A. What would you do? You have two
choices:

i. The first choice would be to give up on your preference and vote D. We
may believe that voting for the low-support candidate D is unlikely to re-
sult in D’s win. However the situation is more difficult than it appears at
first sight. Because, by taking away votes from A, the primary opponent
of B (the coercer’s preferred candida), the coercer is performing an ab-
stention attack. Simply put, the coerced voter is forced to support B by
voting for D.

ii. You can vote for A and face the chance that if no one votes for D, you
will be punished, which has a high possibility. (There is a high probability
that you will be punished if no one votes for it.)

As the example shows, there are some situations in which even the most power-
ful and secure e-voting protocol cannot protect the voter from coercion. In this
type of situation, Risk-Limiting Tallies (RLT) are a mechanism that safeguards’
voters. The concept is simple: only a random subset of ballots is revealed dur-
ing the tally phase, while the remaining remain masked. Then coerced voters
can always claim that they followed all of the instructions, but their ballots were
masked. In other words, they have plausible deniability. This chapter, presents
our research on a new method in risk-limiting tally for voting systems involving
complex ballot forms.

216 Chapter 9. Risk-Limiting Tallies

Contents
9.1 Introduction . 216

9.2 Masking Complex Ballots . 218

9.3 Partially Masked RLTs and RLVs . 219

9.3.1 Selene . 219

9.3.2 RLTs and Verification with Partially Masked Ballots 222

9.4 Distinguishing Distance . 223

9.5 Quantitative Privacy-Type Properties . 224

9.5.1 Privacy . 224

9.5.2 Coercion-Resistance and No Deniability . 225

9.5.3 Receipt-Freeness . 227

9.6 Conclusion . 228

Risk-Limiting Tallies (RLT), which reveal only a random sample of ballots, have pre-
viously been proposed as a method of mitigating certain coercion threats [164]. While
masking some ballots provides plausible deniability for coerced voters, risk-limiting
techniques ensure that the required level of confidence in the election result is achieved.
RLV extended this approach by masking a random subset of receipts or trackers.

This chapter shows how the RLT approach can be generalised and made more flexi-
ble and practical by masking at a finer granularity: at the level of ballot components.

We focus on elections with complex ballots, in which RLT may be vulnerable to
pattern-based vote-buying. We propose several measures of verifiability and resistance
to coercion and investigate the performance of several sampling/masking strategies
against these measures. Additionally, we define new quantitative measures for the level
of coercion resistance in the lack of plausible deniability and vote-buying resistance
in the absence of “free lunch” vote sellers. Additionally, we will discuss the privacy
breached by such masked ballots, including their coercion-resistance and receipt-free
nature. These results and the various ballot masking strategies, are relevant for all elec-
tions that publish ballots for auditing, verification, or transparency purposes.

Outline. The outline of this chapter is as follows; After an introduction in Section 9.1
Section 9.2 explain the idea of partially masking ballots. Section 9.3 describes how RLT
can be used in masked RLT and RLV. Section 9.4 present our result for in distinguishing
distance between randomly masked ballots. Section 9.5 considers quantitative game-
based notions of privacy, coercion-resistance, and receipt-freeness. Section 9.6 con-
cludes. We would like to emphasize that the research presented in this chapter was
previously published in (E-Vote-ID-2021)1 [227].

9.1 Introduction

Some voting systems, including many E2E verifiable systems and some conventional
elections, such as some Australian elections, publish ballots (plaintext). If these ballots
are suitably anonymised, by for example verifiable mixes published on a bulletin board,
then this is typically quite safe. But in some contexts, revealing such information may
be problematic: certain corner cases, such as unanimous votes or absence of any votes
for a candidate and coercion threats, such as signature attacks.

1The International Conference for Electronic Voting

9.1. Introduction 217

In [164] the idea of Risk-Limiting Tallies (RLT) and Risk-Limiting Verification (RLV)
was proposed to mitigate such threats. The idea is to shroud a proportion of the (anonymised)
votes so voters can plausibly claim to have complied with the coercer, even though no
votes appear for the candidate demanded by the coercer or no ballot with the pattern
demanded by the coercer shows up in the tally. The proportion left shrouded can be
adjusted using risk-limiting techniques to ensure that the confidence in the announced
outcome achieves the required threshold, e.g. 99%. The idea extends to the verification
aspects: shrouding some proportion of receipts or trackers. This proves particularly ef-
fective in for example the Selene scheme to counter the “sting in the tail”: the coercer
claiming that the voter’s fake tracker is his own.

In this paper, we note that despite the pleasing features of the constructions of [164],
there are still some drawbacks, in particular if the ballots are rather complex. Moreover,
while RLT may disincentivize coercion, there may still be an incentive for vote-buying:
the voter might still cast the required pattern vote in the hope that it will be revealed.

Further, it has been suggested that RLT is arguably undemocratic in that some voters’
ballots do not contribute to the final tally.

The second objection can be countered by arguing that every vote has an equal prob-
ability of being included in the count. The outcome will be a correct reflection of all
votes cast with whatever confidence level is required. Nonetheless, it is an aspect that
some people find troubling and thus is worth addressing. A pleasing side effect of our
construction is that all ballots are treated equally.

These observations suggest exploring different ways to apply RLT and RLV when bal-
lots are complex: rather than shrouding entire ballots at random, we shroud, at random,
some preferences on each ballot. In effect we are filtering the tally horizontally rather
than vertically. This hits both of the issues above: the chance any given pattern remains
identifiable after the filtering is reduced, and every ballot contributes to the outcome,
albeit not necessarily to every contest. In the full tally construction below, every bal-
lot contributes fully to the announced outcome, but we shroud the link between the
tracker and some components of the ballots. For tracker-based schemes, the voters can
verify some but not all of their selections. This paper seeks to quantify these effects and
explore trade-offs among them.

Our techniques allow us to state and prove bounds on the number of voters an ad-
versary can attack using pattern-based or “signature” attacks. firs, note that assigning
the same or similar, complex ballot pattern to many voters is counterproductive for the
adversary. If even a few voters comply, the rest can point to the signature ballots that al-
ready appear and claim compliance. Thus, an adversary who wants to influence many
voters with a signature attack must be able to produce many distinguishable ballot pat-
terns. This observation motivates us to prove lower and upper bounds on the number
of distinguishable patterns an adversary can construct. We prove these bounds using a
connection to a well-studied problem in the theory of error-correcting codes.

This ballot-masking method and its privacy implications are interesting not only for
RLT and RLV but for all schemes where all or some ballots are published for auditing,
verification, or transparency. For example, Colorado is currently redacting cast-vote
records (CVRs) by removing entire CVRs, e.g., for rare ballot styles; partial masking has
been considered an alternative. We note, however, that masking parts of the ballot might
make it hard to detect ill-formed, e.g., over-votes etc.

We also note that this idea has similarities to the SOBA constructions for Risk-Limiting-
Audits (RLAs), [38], which also publishes each audited ballot “disassembled” into differ-
ent contests, In contrast, the auditors will see the intact ballot. The VAULT approach [37]

218 Chapter 9. Risk-Limiting Tallies

also uses homomorphic encryption of the cast-vote records to achieve the SOBA goals
more easily. (VAULT was used for the first time in a risk-limiting audit in Inyo County,
California, in 2020.) The purpose and underlying cryptographic constructions are quite
different, but our analysis also applies to these cases applies.

We can separate ballots into atomic parts for some tally algorithms and reveal them
independently after anonymising them, effectively counting signature attacks. How-
ever, that reduces public transparency and may reduce public confidence in the election
result.

For Selene, where voters verify their votes via trackers, this separation provides a
method to verify without revealing individual ballots: we simply assign a distinct tracker
to each ballot element. Voters can then verify some or all components of their ballot us-
ing those trackers. A coerced voter could use the Selene tracker-faking mechanism to
assemble a ballot that matches the coercer’s instructions. Technically this is straightfor-
ward but from usability, standpoint seems problematic. Moreover, even if the voter was
prepared to concoct such a fake ballot, the necessary ingredients might not be available,
so coercion threats remain. The probability that one of the atomic trackers is the same
as the coercer’s increases. Thus it makes sense to look for alternatives.

Below, we present the main ideas and analyse differences in privacy, coercion-resistance,
and receipt-freeness for the different methods.

9.2 Masking Complex Ballots

Many elections use simple plurality voting: the voter selects at most one candidate from
a set, in the simplest case, a referendum, choosing between “yes” and “no.” The k ≥ 1
candidates who get the most votes win, or the candidate(s) win at least a threshold frac-
tion of the valid votes. The next level of complexity is single-winner plurality, aka “first
past the post.” More complex social choice functions and correspondingly more com-
plex ballots are common. Perhaps the next level in complexity is approval voting. The
voter can cast votes for several candidates for a single office, and multi-winner plurality,
in which a voter can vote for up to k candidates for k offices. In some cases, voters may
have a quota of votes and are allowed to cast more than one vote for a given candidate,
up to some limit. Some methods allow voters to give a preference ranking to the can-
didates, which can then be translated into “points”, which are then totaled, and these
rankings are later converted to points, k points for the first preference, k −1 for the sec-
ond and so on. In all these cases, the votes for each candidate are added up, and the one
with the most votes wins.

All the above are what we call separable voting methods; that, is, how the compo-
nents of the ballots are grouped into the individual ballots does not affect the outcome.
Consequently we can separate the components and forget any information about to
how they were originally grouped, at least if we have some method assuring that the
ballots were well-formed. Some voting methods are not separable in this sense; prime
examples are Single Transferable Votes (STV) and Instant Runoff.

Common to all of these social choice functions, if the ballots are published, the num-
ber of ways a ballot can be filled grows exponentially, meaning that they are vulnerable
to signature attacks (also known as “Italian” attacks),i.e., a coercer chooses a particu-
lar, unlikely, pattern, instructs the victim to mark a ballot with that pattern and checks
whether a ballot with that pattern appears in the tally.

9.3. Partially Masked RLTs and RLVs 219

Let us assume that the ballots are of the following form:

(v1, v2, . . . , vk) : vi ∈ cList

with k the number of candidates and vi taking values from a specified set of the candi-
date list. cList might, for example, just be {0,1} or a set of integers plus a blank: {1,, s}⋃

{blank}.
In many types of elections, these ballot-level selections, or subsets thereof, will reap-

pear as part of the tally procedure (e.g. in electronic mixnet tallies), as part of an audit
trail or for transparency (electronic scans of paper ballots), in Risk-Limiting Audits us-
ing samples of votes, or verification procedures (e.g. in tracker-based schemes such as
Selene). However, the mapping between the published votes and the voter is normally
anonymised to preserve privacy.

As mentioned above, revealing these ballots may endanger the receipt-freeness of
the election. With Masked Tallies, introduced here, only parts of each ballot are revealed:(

maski 1(v (i)
1),maski 2(v (i)

2), . . . ,maski k (v (i)
k)

)
for i = 1, . . . ,nv.

The functions maski j are either the identity, displaying the component of the vote,
or a constant, .e.g., ∗ ∉ cList, masking the component and n is the number of ballots
cast.

Risk-Limiting Tallies [164] involved unmasking as many randomly selected ballots
as needed to determine the election result with a chosen risk limit. The remaining bal-
lots were kept completely masked. Here we suggest a generalization, allowing partial
masking of the ballots, and we will discuss the impact on risk limits, privacy, coercion-
resistance, and resistance to vote-buying.

9.3 Partially Masked RLTs and RLVs

Before extending these to general masks, we reprise risk-limiting tallies and verification,
RLT and RLV [164]. But, first, we recapitulate the idea of tracker-based verification in
terms of Selene.

9.3.1 Selene

Selene(Σελήνη)2, introduced by Peter Ryanet al. [225], is an e-voting protocol that puts
voters’ choices in the clear on the BB while providing a unique private tracking num-
ber that allows voters to verify their vote. Furthermore, establishing a level of coercion-
resistance ensures that the voters only learn their tracking numbers after the votes have
been posted. The resulting scheme provides receipt-freeness, a good level of coercion-
resistance while also providing a more immediately understandable form of verifiabil-
ity. We briefly mention the protocol here, and for more details on the subject we refer
to [225].

Cryptographic primitives Selene relies on the following primitives: signature scheme 2.7.4,
ElGamal encryption scheme 2.7.2.1 and verifiable re-encryption mix protocols, the Fiat-
Shamir heuristic in RO model 3.8.4 and Pederson Commitment 2.7.1.

Protocol participants. Selene is run among the following participants: voting authority
Auth, bulletin board BB, mix server mix.s, tellers T, and voters v1, . . . ,vnv .

2In Greek mythology, Σελήνη means moon

220 Chapter 9. Risk-Limiting Tallies

Protocol description. Selene has the following phases:
Set up. The election authority runs the key generation algorithm of ElGamal en-

cryption scheme, to generate the pair of keys for the election and publish them on the
bulletin board along with the election parameter:

keyelection = (PK,SK);PK= (
G, g ,h,ppelection

)
,SK= (x)

and then in the next step for all voters, v1, . . . ,vnv a pair of key is assigned:

vi :
(
hi ,ski ;hi = g ski

)
Generating the tracking number.

1. The election trustee publicly creates a set of tracker numbers tr.n j for j = 1. . . ,nv,
computes g tr.n j and generate a list, L∗ = {{g n j }pk} j where

{
g n j

}
pk =ElGamal.Encpk(g n j).

L∗ = {
n j , g ni , {g n j }pk

}
(9.1)

2. Then the list L is put through a sequence of verifiable re-encryption and permuta-
tion mixnet to obtain the new list L= {g nσi }pk.

3. Each component from the list L is assigned to each voter public key hi

(
vi : (hi ,ski), {g tr.nσi }

)
(9.2)

Generating the commitment:

1. The tellers T1, . . . ,Tt , distributively, generate the trapdoor commitments:

2. For j = 1, . . . , t the teller T j choose nv random numbers ri j for each voter v j and
encrypt hri

i . At the end of this step, for each voter vi , t , ciphertexts are generated:

(vi ,hi) :
[
{hri 1

i }, {hri 2
i }, . . . , {hri t

i }
]

by exploiting the multiplicative homomorphic property of ElGamal cryptosystem
we obtain:

{hri
i } =

t∏
j=1

{h
ri j

i } = {h
ri=

∑t
j=1 ri j

i }

{hri
i } · {g nσi } = {hri

i .g tr.nσi }

Note that the tellers must keep their g ri j .

3. Next the teller by decrypting the term {hri
i .g tr.nσi }, retrieves Comi = ri · tr.nσi . We

consider Comi as a commitment of voter’s tracking number which in fact is Peder-
sen commitment to value ni .

4. Now they publish the following terms for each voter:

vi : (hi , {g tr.ni },Comi · g tr.nσi , .)

9.3. Partially Masked RLTs and RLVs 221

All these steps have been done in a verifiable way, meaning that each step is pro-
vided with zero-knowledge proofs, (for simplicity, we will not mention details.)
The last entry is left blank for the vote.

Voting. In this step, every voter vi encrypt their choice, {votei }, sign it (to avoid ballot
stuffing[12]) and casts their vote in the form:(

sign({votei }pkT
),πi

)
where πi is a non-interactive proof of knowledge of the plaintext to ensure ballot inde-
pendence [16, 35,13] and prevent an attacker from copying and re-encrypting a previ-
ously cast a vote as their own. The voter sends their ballot to the bulletin board. The
bulletin board checks the signature and the proof before publishing the ballot :(

vi ,hi , {g tr.ni }, (hri
i · g tr.nσi), ({votei }pkT

,πi)
)

The second and fourth components are taken out and put through verifiable re-
encryption mix-nets and threshold decrypted for each voter. We then obtain the list
of pairs:

(votei ,nσi)

Revealing the trackers. After the trackers and votes have been published on BB, each
teller T j sends g ri j to the voter via a private channel for suitable amount of time. Each
voter combine the randomness to obtain,

t∏
j=1

g ri , j = g ri

which is the α-term of the ElGamal encryption under the voter’s public key. Now the
voter has both components:

Encpki
(g ni ;ri) = (αi ,βi)

αi =
t∏

j=1
g ri , j = g ri

βi =Comi = hri
i · g nσ j

⇒Decski (αi ,βi) 7→ gσi

And by having the value g nσi voter, she can find her number nσi from the list 9.1 and
verify her vote.

We reprise risk-limiting tallies and verification, RLT and RLV [164], before extending
these to general masks. Now we recapitulate the idea of tracker-based verification in
terms of Selene.

According to the above description, assume that votes are encrypted component-
wise; at, the end of the mixing we will have encrypted votes and trackers that have been
mixed verifiably in parallel on the bulletin board:

({tr.ni }pk, ({v (i)
1 }pk, {v (i)

2 }pk,{v (i)
k }pk))

These ballots can now be verifiably decrypted to reveal the vote/tracker pairs that the
voters can check, and anyone can compute the tally directly on the plaintext votes.

222 Chapter 9. Risk-Limiting Tallies

9.3.2 RLTs and Verification with Partially Masked Ballots

In the original approach to RLT (where ballots are without trackers) and RLV (with track-
ers for individual verification), see [164], the idea was only to decrypt a random subset
of the ballots. The number decrypted is controlled by a risk-limit that bounds the prob-
ability that the announced election result will be wrong.

In the new masked RLV and RLT approach, we reveal randomly selected ballots’ com-
ponents (and RLV trackers). If there is more than one contest on the ballot, the contests
can be treated independently. How much we reveal will again be governed by a speci-
fied risk limit, as in [164]. A natural choice is to first decrypt m of each ballot’s k entries
at random and increase m if necessary to meet the risk limit. This is the simplest and
will be used in the analysis below. In practice, it may make sense to change the rate of
openings per candidate dynamically, e.g. if a candidate is popular, we might be able to
decrease the rate of the unmasking of votes for that candidate, maintaining the risk limit
while improving coercion-resistance.

Using this masked approach for RLV with tracker verification masking means that
only parts of the ballot can be verified. Still, unlike to the original RLV, every voter can
verify something. We will quantify how much.

9.3.2.1 Full Tally with Partial Verification (FTPV)

A social choice function is separable if, for tallying purposes, each vote’s components
can be considered separately. For example, plurality, approval, and Borda count are
separable; instant-runoff voting and single transferrable vote are not. For separable so-
cial choice functions, it is possible to compute the full tally, i.e. achieve 100% confidence
in the outcome while partially masking selections. For each ballot, we randomly select
some components. All selected components for all ballots are gathered in another part
of the BB and subjected to a full, component-wise shuffling before decryption. Then,
their positions in the original ballots are replaced by ∗. Thus, the way these selected
components appeared in the original ballots is lost.

The FTPV approach above might still hit corner cases, for instance, if no vote was
cast for a particular candidate. This suggests using a hybrid approach in which we use
the approach above but reveal a random subset of the components separated from the
ballots. Thus, we reveal enough of each ballot linked to the tracker to make verification
meaningful while mitigating coercion threats. A larger portion of the ballots is revealed
without a link to the trackers to attain the required risk limit tally

9.3.2.2 Masked Audited Tallies

An interesting option for efficient computation of complex social choice functions is to
use the unmasking to challenge the correctness of the tally. At the same time, partial
homomorphic encryption is efficient for calculating the sum of votes, while more com-
plex functions are less efficient. However, randomly revealed (previously mixed) plain-
texts could be used to audit the correctness of the computation of the election result on
encrypted data. One example is the possibility of encrypting the data with both multi-
plicative ElGamal and additive Paillier for efficient computations. Normally, it is hard
to prove that the plaintexts are equal, but masking can be directly checked for the re-
vealed plaintexts. This gives guarantees of the integrity of the tally against risk-adverse
adversaries.

9.4. terse version 223

9.4 Distinguishing Distance and Applications to Signature Attacks and
Individual Verifiability

In [227] we define a metric on the set of complex ballots that characterizes how well
pairs of strings can be distinguished under random masking. We then observe that this
metric is a monotone transformation of the Hamming distance used in coding theory
in some cases. We also precisely characterize the cases when this occurs. Next, we use
the connection to coding theory to answer the following question: how many simulta-
neous signature attacks can a coercer and/or vote-buyer launch result in Theorem 9.4.1.
Finally, we give another application of the distinguishing distance: we use it to quantify
the effect of a masking strategy on individual verifiability (See 9.3).

Here we briefly describe our result related to distinguishing distance, and for more
details on the concept and proof of the theorem, we refer to [227].3 Therefore, we prove
the following theorem to establish our bounds on the number of simultaneous signature
attacks under a pairwise distinguishability constraint.

Theorem 9.4.1. For every finite set cList, for every k ∈N, for every probability distribution
pS on subsets of {1, . . . ,k} satisfying

∃(r (0), . . . ,r (k)) ∀s, pS(s) = r (|s|)(k
|s|

) ,

for every q ∈ [0,1 − pS(;)], let rmax(V ,k, pS , q) denote the size of the largest collection
{x1, . . . xr } with the property ∀i ̸= j ,dpS (xi , x j) ≥ q. Then

|V |k∑gpS (q)−1

j=0

(k
j

)
(|V |−1) j

≤ rmax(V ,k, pS , q) ≤ |V |k∑⌊(gpS (q)−1)/2⌋
j=0

(k
j

)
(|V |−1) j

In the above theorem, V = cList refers to the possible votes V = cList, and we con-
sider the complex ballots with k components taken from the set V ; thus, the set of pos-
sible ballots is Vk . We ignore here any constraints on what constitute valid ballots. For
x ∈Vk and S ⊂ {1, . . . ,k}, we denote by xS the substring of x on the positions in S.

Quantifying the Effect of Masking on Individual Verifiability. We also quantify the ef-
fect of a particular masking strategy, specified by the probability distribution pS , on in-
dividual verifiability. We propose the following quantity:3

IV (pS) = inf
x ̸=y∈Vk

dpS (x, y) (9.3)

This quantity takes values between 0 and 1, where IV (pS) = 1 means that the masking
strategy pS leaves the individual verifiability of the underlying voting protocol invariant,
while IV (pS) = 0 means that the masking strategy pS destroys any individual verifiability
that was present in the underlying voting protocol.

One attractive feature of this setup is that an individual voter does not need to know
the distribution pS .

3Due to the fact that the author of this thesis was not the primary contributor to this part, we only refer to the
subject and will not give the details in this manuscript.

224 Chapter 9. Risk-Limiting Tallies

For distributions pS that satisfy ∃(r (0), . . . ,r (k))∀s, pS(s) = r (|s|)
(k
|s|)

, we propose a simple

formula for IV (pS):

IV (pS) =
k−1∑
j=0

(k−1
j

)
r (j +1)(k
j+1

) =
k∑

l=1

l

k
r (l).

9.5 Quantitative Privacy-Type Properties

We now want to measure and compare privacy properties for different masked tally
methods. When computing concrete values we will consider approval voting with k
candidates only 0 or 1 is allowed for each candidate, without any overall constraint,
(v1, . . . , vk) ∈ {0,1}k . For the n honest voters we assume for simplicity that the probability
to vote vi = 1 is pi and these probabilities are independent. As a special concrete case
we consider a student election with n = 1001 voters (one voter is under observation),
k = 5 candidates with probabilities (0.6,0.4,0.01,0.01,0.01), i.e. two popular candidates
and three unpopular.

9.5.1 Privacy

We first consider the quantitative δ-privacy definition from [183] (See 6.2.3). The main
other quantitative privacy definition is [45], but it is less suited considering signature
attacks. We mention that in definition 40, the value δ will depend on the chosen vote
distribution, and we see that it is especially relevant to penalize signature attacks: if we
assume that there is a vote choice v∗ = (v∗

1 , . . . , v∗
k) which rarely gets selected and has a

probability close to zero, then an unmasked tally which reveals all cast plaintext ballots,
even in anonymised form, will have δ = 1 (when the adversary simply checks if v∗ ap-
pears).

Full Ballot Disclosure. When we reveal all ballots, we can consider the case where the
observer tries to distinguish a voter casting the most unpopular vote vs the most popular
vote, as in a signature attack. That is, in the definition we let vO

0 = (v1, . . . , vk) with vi =
1 if pi ≤ 1/2 and vi = 0 if pi > 1/2, and we have vO

1 = (1− v1, . . . ,1− vk). Denote the
corresponding probability pmi n . Now a good strategy is simply to check if at least one
(v1, . . . , vk) appears in the disclosed ballots, and the algorithm then outputs “1”. This
means

Pr[(πO||πvobs (vO
0)||πv)(l) → 1] = 1,

but (πO||πvobs (vO
1)||πv) will also output “1” if another voter chooses vO

0 . This hap-
pens with probability 1− (1−pmi n)nh . We conclude that δ ≥ (1−pmi n)nh . For the case
of the student election we have that vO

0 = (0,1,1,1,1) with pmi n = 0.42 ·0.013 = 1.6 ·10−7.
Thus for nh = 1000 we have δ≥ (1−pmi n)nh ≈ 0.99984, i.e. close to 1.

Result Only. We now consider the case where we only reveal the overall result

res= (r1, . . . ,rk).

In this case we can follow an analysis close to [183, 184] for calculating δ. For every
possible result r we calculate the probability that the result happened if the observed

9.5. Quantitative Privacy-Type Properties 225

voter cast vO
0 or vO

1 . The algorithm will then output one if the former probability is
larger. We get

δ= ∑
r∈M∗

vO
0 ,vO

1

(A
vO

0
r − A

vO
1

r)

where

M∗
vO

0 ,vO
1
= {r ∈R : A

vO
1

r ≤ A
vO

0
r },

and R is the set of all possible results of the election. at the same time, Av
r denotes

the probability that the choices of the honest voters yield the result r given that vobs ’s
choice is v . These probabilities can explicitly be calculated since each candidate count
from the honest voters, Xi , is binomially distributed, Xi ∼ BD(nh , pi). We thus have

Av
r =P(X1 = r1 − v1) · · ·P(Xk = rk − vk) =

k∏
i=1

(
n −1

ri − vi

)
pri−vi

i (1−pi)n−ri+vi−1.

RLT. In the original RLT method, we keep a certain fraction, fblind, of the ballots hidden,
that is (1− fblind)n ballots are published. Let’s consider the optimal algorithm from the
full ballot disclosure and the corresponding δfull. We see that δ= (1− fblind)δfull since the
probability that the observed voter’s ballot is hidden is (1− fblind).

Masked RLT. We now consider the case of masked RLTs where we release all ballots but
with only m out of k components unmasked. A good strategy to lower bound δ is to
count the number Nb of colliding ballots v which satisfy

maskv v =maskv vO
b for b = 0,1.

We choose vO
0 as the most unlikely ballot, as above and take vO

1 as the opposite bal-
lot to discriminate optimally between the two counts. The main distinguishing power
comes from N0, and we let the distinguishing algorithm output “1” if the probability of
the honest voters casting N0 −1 colliding votes is higher than getting N0 collisions. The
probability for each honest voter to have a collision is

pcol =
(

k

m

)−1

· ∑
1≤i1<i2<...<im≤k

pi1 . . . pim

and N0 ∼ BD(nh , p), where pi is the probability of a match in the i th candidate. In [227]
we analyse the above probability formula for the student election example4. The algorithm
above will then simply give the probability at the mode of the binomial distribution with
pcol. For m = 3 we find δ≥ 0.6 for the student election.

9.5.2 Coercion-Resistance and No Deniability

We now analyse the coercion-resistance level, as defined in Coercion-Resistance [181](See 39)
each technique provides. However, since plausible deniability is an essential factor for
the usability of coercion-resistance mechanisms, we consider the following definition
to measure this aspect.

4Due to the fact that the author of this thesis was not the primary contributor to this part, we only refer to the
subject and will not give the details in this manuscript.

226 Chapter 9. Risk-Limiting Tallies

The level of the plausibility of a voter claiming to have followed the coercer while
actually following the counter-strategy, relates to the probability of false positives when
the coercer tries to determine if the voter disregarded the instructions. In the following
we assume that the coercer outputs 1 when blaming the voter without loss of generality.
We now want to define the maximal probability of getting caught without any denia-
bility, i.e. we consider the case where Pr[(πc ||πvco ||πv)(l) 7→ 1] = 0 or negligible, i.e. the
coercer only uses strategies where he never blames an honest voter.

Definition 50. An e-voting protocol S achieves δcr ,no−d -coercion-resistance if for all dic-
tated coerced strategies πvco ∈VS there exists a counter-strategy π̃vco ∈VS s.t. for all coercer
programs πc ∈CS :

• Pr[(πc ||π̃vco ||πv)(l) 7→ γ] is overwhelming.

• Pr[(πc ||π̃vco ||πv)(l) 7→ 1] is δcr ,no−d -bounded and Pr[(πc ||πvco ||πv)(l) 7→ 1] is negligi-
ble.

The coercer’s optimal strategy to obtain this δcr ,no−d and the voter’s strategy might
differ from those in Definition 39 but δcr ,no−d ≤ δcr .

The no deniability probability clearly separates the RLT approaches. However, the
original RLT always has plausible deniability if we choose to keep some ratio of ballots
shrouded, and the voter can claim her ballot was not revealed. This is e.g. important for
RLV giving deniability against an attack where the coercer provides a ciphertext to cast
and asks for its decrypted vote.

In the case of masked ballots, there can be a chance of getting caught undeniably.
This will depend strongly on the number of revealed ballot components m, the vote dis-
tribution and the voter’s goal. For the student election analysed above, the worst case
when the goal of the voter is to cast (1,0,0,0,0). The coercer’s optimal strategy is then to
demand a vote for (0,1,1,1,1). The coercer will blame the voter if there is no matching
masked ballot, i.e. if no honest voters produce a collision which happens with proba-
bility (1−pcol)nh+1. The probability of no deniability is then p = 8 ·10−9 for m = 2 but
jumps abruptly to p = 0.6 for m = 3.

An interesting case is when the voter has a simple goal to cast a signature part or not,
and when the vote distribution has some ballots strictly zero probability. for example
let us consider a three candidate 0/1 election with 1-vote probabilities (1/2,1/2,0). The
voter’s goal is to cast a 1 for the first candidate. The coercer’s optimal strategy is to de-
mand a signature ballot (0,0,1). The voter has two counter-strategies: 1) casting a vote
(1,0,0) without the signature part or 2) casting a vote (1,0,1) with the signature part.
For (1) there is no deniability if no other voter casts a matching ballot and the coerced
voter’s ballot does not match either.

For m = 1, this happens with p = (2/3)nh+1 and for m = 2 with p = (11/12)nh , both
are small if we have many voters. For 2) there will always be a matching vote if the first
part of the coerced voter’s ballot is masked. However, if the last part is revealed, the
coercer can deduce this ballot comes from the coerced voter since this candidate had a
probability of 0. If the vote in the first part is revealed as well, then the voter is caught
with no deniability. Thus is no deniability with probability 1/3(2/3)nh for m = 1 and
1/3+1/3(11/12)nh for m = 2. Thus for m = 1, strategy 2) is always better, but for m = 2
strategy 1) is better when we have more than 13 voters. In some cases the voter strategy
thus depends on m, which might not be known beforehand.

Finally, it is also natural to define the level of plausibility we can provide. The average
plausibility that a voter has, e.g. in Definition 39, is useful. Still, it would be more useful

9.5. Quantitative Privacy-Type Properties 227

to guarantee that the voter always has a certain level of coercion-resistance. We leave a
precise definition for future work.

9.5.3 Receipt-Freeness

Following [181], definition 39 also covers receipt-freeness. However, we again argue that
modelling some variants is useful. For example the following definition is based on a
swap of πvco and π̃vco in Definition 50, and models vote buyers who do not want to pay
a “free lunch” to vote sellers who follow their own goal. The voter goal γ can here be to
cast a specified vote or set of votes.

Definition 51 (Weak Vote Buying Resistance). For a given small pfl, S achieves δw vb-
coercion-resistance if for all dictated coerced strategies πvco ∈ VS there exists a counter-
strategy π̃vco ∈VS s.t. for all coercer programs πc ∈CS :

• Pr[(πc ||π̃vco ||πv)(l) 7→ γ] is overwhelming.

• Pr[(πc ||πvco ||πv)(l) 7→ 1]−Pr[(πc ||π̃vco ||πv)(l) 7→ 1] is δw vb-bounded and
Pr[(πc ||π̃vco ||πv)(l) 7→ 1] is pfl-bounded.

We interpret outputting “1” as paying the vote seller, and this definition bounds how
often an instruction-following vote seller gets paid by a vote-buyer (by δw vb +pfl), but
under the condition that a voter who casts another vote is only paid with a (very) small
probability pfl. This is a weakened vote-buyer model but interesting since a vote buyer
should avoid vote sellers going for a “free lunch”. If the probability of an honest vote
seller getting paid is low, it will help curb vote-selling (even though the vote buyer could
increase the price and create a “vote selling lottery”). This definition, makes sense to
drop the quantification over the coercer’s strategies to see the resistance of vote to buy
for different vote choices.

RLT. In the original RLT, a signature ballot will be revealed with probability 1− fbl i nd . If
the vote buyer sees this, they can pay the vote seller. They will only pay the voter seller
wrongly with a small probability pfl equal to the probability that one of the honest vot-
ers cast the signature ballot, i.e. δvb ≃ 1− fbli nd which can be rather high and protects
badly against vote-buying.

Masked RLT. For the masked ballots, we can, however, choose m such that several bal-
lots will have the same masking as the signature ballot and makes it hard for the vote
buyer to assess if the signature ballot was cast. For the student election, the number of
matches with the optimal signature ballot (0,1,1,1,1) is binomially distributed with an
expectation value of 18.4 colliding ballots and a standard deviation of around 4.

For a more precise example, we can consider the three-candidate election with prob-
abilities (1/2,1/2,0) as above and assume that the goal of the voter is to cast 0 for can-
didate 1 and pfl = 0. For m = 1, we will have δvb = 0, but for m = 2, the vote-buyer can
demand a vote for candidates 1 and 3 and payout if he sees (1,∗,1). Any counter-strategy
with 0 for candidate 1 gives δvb = 1/3.

We note that the new quantitative definitions for no deniability coercion-resistance
(Def. 50), the weak vote-buying resistance (Def. 51) and the originalδcr -coercion-resistance
(Def. 39) are considering different aspects of coercion-resistance and stating the three
different δ-values gives a more nuanced description of the security of a given voting

228 Chapter 9. Risk-Limiting Tallies

protocol. Also, note that the δ values are calculated using potentially different strategies
for the coercer and voter. Finding unified strategies optimising the parameters is an in-
teresting line of future work. Finally, there are natural, more fine-grained, definitions
extending these which should also be considered in the future.

9.6 Conclusion

We have shown that the idea of risk-limiting tallies and risk-limiting verification can
be applied effectively to complex ballots. Furthermore, we gain far greater flexibility in
masking strategies by partially masking each ballot rather than simply masking a subset
of the ballots as in the original RLT and RLV. This will be explored further to optimise the
trade-offs between the various measures defined in future works.

The approach is more robust against any claims of being undemocratic: all ballots
are counted, and indeed in the full tally/partial verification option, all are counted fully.
The only compromise then is some reduction in the level of verifiability, but this can be
adjusted and is probably acceptable. If we compare this with ThreeBallot, the chance of
detecting a manipulated ballot is 1/3, assuming that the attacker does not learn which
ballot was retained by the voter. In our case, we can achieve a good level of coercion
mitigation with, say, a shrouding of ±1/2 of each ballot

Finally, we did a preliminary analysis of the quantitative privacy for the different tally
methods, and the coercion-resistance, particularly the probability a coerced voter gets
undeniably caught. However, the new masked tallies are more appropriate for receipt-
freeness, particularly with upper bounds on the number of vote sellers. In contrast, the
old RLT provides good plausible deniability to coerced voters. This suggests combining
both methods when possible, but future work is needed to define the precise level of
vote-buying resistance.

229

Bibliography

[1] Michel Abdalla et al. “Better Security for Functional Encryption for Inner Product Eval-
uations”. In: IACR Cryptol. ePrint Arch. (2016), p. 11. URL: http://eprint.iacr.org/
2016/011.

[2] Michel Abdalla et al. “Decentralizing Inner-Product Functional Encryption”. In: Public-
Key Cryptography - PKC 2019 - 22nd IACR International Conference on Practice and The-
ory of Public-Key Cryptography, Beijing, China, April 14-17, 2019, Proceedings, Part II.
Ed. by Dongdai Lin and Kazue Sako. Vol. 11443. Lecture Notes in Computer Science.
Springer, 2019, pp. 128–157. DOI: 10.1007/978- 3- 030- 17259- 6_5. URL: https:
//doi.org/10.1007/978-3-030-17259-6_5.

[3] Michel Abdalla et al. “Multi-Client Inner-Product Functional Encryption in the Random-
Oracle Model”. In: Security and Cryptography for Networks - 12th International Confer-
ence, SCN 2020, Amalfi, Italy, September 14-16, 2020, Proceedings. Ed. by Clemente Galdi
and Vladimir Kolesnikov. Vol. 12238. Lecture Notes in Computer Science. Springer, 2020,
pp. 525–545. DOI: 10.1007/978-3-030-57990-6_26. URL: https://doi.org/10.
1007/978-3-030-57990-6_26.

[4] Michel Abdalla et al. “Multi-Input Functional Encryption for Inner Products: Function-
Hiding Realizations and Constructions Without Pairings”. In: Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2018, Proceedings, Part I. Ed. by Hovav Shacham and Alexandra Boldyreva.
Vol. 10991. Lecture Notes in Computer Science. Springer, 2018, pp. 597–627. DOI: 10.
1007/978-3-319-96884-1_20. URL: https://doi.org/10.1007/978-3-319-
96884-1_20.

[5] Michel Abdalla et al. “Multi-input Inner-Product Functional Encryption from Pairings”.
In: Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 -
May 4, 2017, Proceedings, Part I. Ed. by Jean-Sébastien Coron and Jesper Buus Nielsen.
Vol. 10210. Lecture Notes in Computer Science. 2017, pp. 601–626. DOI: 10.1007/978-
3-319-56620-7_21. URL: https://doi.org/10.1007/978-3-319-56620-7_21.

[6] Michel Abdalla et al. “Searchable Encryption Revisited: Consistency Properties, Relation
to Anonymous IBE, and Extensions”. In: J. Cryptol. 21.3 (2008), pp. 350–391. DOI: 10.
1007/s00145-007-9006-6. URL: https://doi.org/10.1007/s00145-007-9006-6.

[7] Michel Abdalla et al. “Simple Functional Encryption Schemes for Inner Products”. In:
Public-Key Cryptography - PKC 2015 - 18th IACR International Conference on Practice and
Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015, Pro-
ceedings. Ed. by Jonathan Katz. Vol. 9020. Lecture Notes in Computer Science. Springer,
2015, pp. 733–751. DOI: 10.1007/978-3-662-46447-2_33. URL: https://doi.org/
10.1007/978-3-662-46447-2_33.

[8] Claudia Z. Acemyan et al. “Usability of Voter Verifiable, End-to-end Voting Systems: Base-
line Data for Helios, Prêt à Voter, and Scantegrity II”. In: 2014 Electronic Voting Technology

http://eprint.iacr.org/2016/011
http://eprint.iacr.org/2016/011
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-57990-6_26
https://doi.org/10.1007/978-3-030-57990-6_26
https://doi.org/10.1007/978-3-030-57990-6_26
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/s00145-007-9006-6
https://doi.org/10.1007/s00145-007-9006-6
https://doi.org/10.1007/s00145-007-9006-6
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-46447-2_33

230 Bibliography

Workshop/Workshop on Trustworthy Elections, EVT/WOTE ’14, San Diego, CA, USA, Au-
gust 18-19, 2014. USENIX Association, 2014. URL: https://www.usenix.org/conference/
evtwote14/workshop-program/presentation/acemyan.

[9] Dirk Achenbach et al. “Improved Coercion-Resistant Electronic Elections through De-
niable Re-Voting”. In: USENIX Journal of Election Technology and Systems (JETS) (Aug.
2015). URL: https://www.usenix.org/conference/jets15/workshop-program/
presentation/achenbach.

[10] Ben Adida. “Helios: Web-based Open-Audit Voting”. In: Proceedings of the 17th USENIX
Security Symposium, July 28-August 1, 2008, San Jose, CA, USA. Ed. by Paul C. van Oorschot.
USENIX Association, 2008, pp. 335–348. URL: http : / / www . usenix . org / events /
sec08/tech/full_papers/adida/adida.pdf.

[11] Shweta Agrawal, Benoît Libert, and Damien Stehlé. “Fully Secure Functional Encryption
for Inner Products, from Standard Assumptions”. In: Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part III. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9816.
Lecture Notes in Computer Science. Springer, 2016, pp. 333–362. DOI: 10.1007/978-3-
662-53015-3_12. URL: https://doi.org/10.1007/978-3-662-53015-3_12.

[12] Shweta Agrawal et al. “Adaptive Simulation Security for Inner Product Functional En-
cryption”. In: Public-Key Cryptography - PKC 2020 - 23rd IACR International Conference
on Practice and Theory of Public-Key Cryptography, Edinburgh, UK, May 4-7, 2020, Pro-
ceedings, Part I. Ed. by Aggelos Kiayias et al. Vol. 12110. Lecture Notes in Computer Sci-
ence. Springer, 2020, pp. 34–64. DOI: 10.1007/978-3-030-45374-9_2. URL: https:
//doi.org/10.1007/978-3-030-45374-9_2.

[13] Shweta Agrawal et al. “Efficient Public Trace and Revoke from Standard Assumptions:
Extended Abstract”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. Ed.
by Bhavani M. Thuraisingham et al. ACM, 2017, pp. 2277–2293. DOI: 10.1145/3133956.
3134041. URL: https://doi.org/10.1145/3133956.3134041.

[14] Shweta Agrawal et al. “Functional Encryption: New Perspectives and Lower Bounds”. In:
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 18-22, 2013. Proceedings, Part II. Ed. by Ran Canetti and Juan A.
Garay. Vol. 8043. Lecture Notes in Computer Science. Springer, 2013, pp. 500–518. DOI:
10.1007/978-3-642-40084-1_28. URL: https://doi.org/10.1007/978-3-642-
40084-1_28.

[15] Prabhanjan Ananth and Abhishek Jain. “Indistinguishability Obfuscation from Compact
Functional Encryption”. In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I. Ed. by
Rosario Gennaro and Matthew Robshaw. Vol. 9215. Lecture Notes in Computer Science.
Springer, 2015, pp. 308–326. DOI: 10.1007/978-3-662-47989-6_15. URL: https:
//doi.org/10.1007/978-3-662-47989-6_15.

[16] Prabhanjan Ananth et al. “From Selective to Adaptive Security in Functional Encryp-
tion”. In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II. Ed. by Rosario Gennaro
and Matthew Robshaw. Vol. 9216. Lecture Notes in Computer Science. Springer, 2015,
pp. 657–677. DOI: 10.1007/978-3-662-48000-7_32. URL: https://doi.org/10.
1007/978-3-662-48000-7_32.

https://www.usenix.org/conference/evtwote14/workshop-program/presentation/acemya n
https://www.usenix.org/conference/evtwote14/workshop-program/presentation/acemya n
https://www.usenix.org/conference/jets15/workshop-program/presentation/achenbach
https://www.usenix.org/conference/jets15/workshop-program/presentation/achenbach
http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-030-45374-9_2
https://doi.org/10.1007/978-3-030-45374-9_2
https://doi.org/10.1007/978-3-030-45374-9_2
https://doi.org/10.1145/3133956.3134041
https://doi.org/10.1145/3133956.3134041
https://doi.org/10.1145/3133956.3134041
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-48000-7_32

Bibliography 231

[17] Roberto Araújo et al. “Remote Electronic Voting Can Be Efficient, Verifiable and Coercion-
Resistant”. In: Financial Cryptography and Data Security - FC 2016 International Work-
shops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016, Re-
vised Selected Papers. Ed. by Jeremy Clark et al. Vol. 9604. Lecture Notes in Computer
Science. Springer, 2016, pp. 224–232. DOI: 10.1007/978-3-662-53357-4_15. URL:
https://doi.org/10.1007/978-3-662-53357-4_15.

[18] Nuttapong Attrapadung and Benoît Libert. “Functional encryption for public-attribute
inner products: Achieving constant-size ciphertexts with adaptive security or support for
negation”. In: J. Math. Cryptol. 5.2 (2012), pp. 115–158. DOI: 10.1515/jmc.2011.009.
URL: https://doi.org/10.1515/jmc.2011.009.

[19] Nuttapong Attrapadung et al. “Attribute-based encryption schemes with constant-size
ciphertexts”. In: Theor. Comput. Sci. 422 (2012), pp. 15–38. DOI: 10.1016/j.tcs.2011.
12.004. URL: https://doi.org/10.1016/j.tcs.2011.12.004.

[20] L Babai. “Trading Group Theory for Randomness”. In: Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing. STOC ’85. Providence, Rhode Island,
USA: Association for Computing Machinery, 1985, 421–429. ISBN: 0897911512. DOI: 10.
1145/22145.22192. URL: https://doi.org/10.1145/22145.22192.

[21] Michael Backes, Martin Gagné, and Malte Skoruppa. “Using mobile device communica-
tion to strengthen e-Voting protocols”. In: Proceedings of the 12th annual ACM Workshop
on Privacy in the Electronic Society, WPES 2013, Berlin, Germany, November 4, 2013. Ed. by
Ahmad-Reza Sadeghi and Sara Foresti. ACM, 2013, pp. 237–242. DOI: 10.1145/2517840.
2517863. URL: https://doi.org/10.1145/2517840.2517863.

[22] Saikrishna Badrinarayanan et al. “Multi-input Functional Encryption for Unbounded Ar-
ity Functions”. In: Advances in Cryptology - ASIACRYPT 2015 - 21st International Con-
ference on the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part I. Ed. by Tetsu Iwata and
Jung Hee Cheon. Vol. 9452. Lecture Notes in Computer Science. Springer, 2015, pp. 27–
51. DOI: 10.1007/978-3-662-48797-6_2. URL: https://doi.org/10.1007/978-3-
662-48797-6_2.

[23] Saikrishna Badrinarayanan et al. “Verifiable Functional Encryption”. In: Advances in Cryp-
tology - ASIACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceed-
ings, Part II. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10032. Lecture Notes in
Computer Science. 2016, pp. 557–587. DOI: 10.1007/978-3-662-53890-6_19. URL:
https://doi.org/10.1007/978-3-662-53890-6_19.

[24] Alexandros Bakas and Antonis Michalas. “Multi-Input Functional Encryption: Efficient
Applications from Symmetric Primitives”. In: 19th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, TrustCom 2020, Guangzhou,
China, December 29, 2020 - January 1, 2021. Ed. by Guojun Wang et al. IEEE, 2020, pp. 1105–
1112. DOI: 10.1109/TrustCom50675.2020.00146. URL: https://doi.org/10.1109/
TrustCom50675.2020.00146.

[25] Boaz Barak. “How to Go Beyond the Black-Box Simulation Barrier”. In: FOCS. 2001, pp. 106–
115. DOI: 10.1109/SFCS.2001.959885.

[26] Boaz Barak and Yehuda Lindell. “Strict Polynomial-Time in Simulation and Extraction”.
In: SIAM J. Comput. 33.4 (2004), pp. 738–818. DOI: 10.1137/S0097539703427975. URL:
https://doi.org/10.1137/S0097539703427975.

https://doi.org/10.1007/978-3-662-53357-4_15
https://doi.org/10.1007/978-3-662-53357-4_15
https://doi.org/10.1515/jmc.2011.009
https://doi.org/10.1515/jmc.2011.009
https://doi.org/10.1016/j.tcs.2011.12.004
https://doi.org/10.1016/j.tcs.2011.12.004
https://doi.org/10.1016/j.tcs.2011.12.004
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/2517840.2517863
https://doi.org/10.1145/2517840.2517863
https://doi.org/10.1145/2517840.2517863
https://doi.org/10.1007/978-3-662-48797-6_2
https://doi.org/10.1007/978-3-662-48797-6_2
https://doi.org/10.1007/978-3-662-48797-6_2
https://doi.org/10.1007/978-3-662-53890-6_19
https://doi.org/10.1007/978-3-662-53890-6_19
https://doi.org/10.1109/TrustCom50675.2020.00146
https://doi.org/10.1109/TrustCom50675.2020.00146
https://doi.org/10.1109/TrustCom50675.2020.00146
https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1137/S0097539703427975
https://doi.org/10.1137/S0097539703427975

232 Bibliography

[27] Razvan Barbulescu. “A Brief History of Pairings”. In: Arithmetic of Finite Fields - 6th In-
ternational Workshop, WAIFI 2016, Ghent, Belgium, July 13-15, 2016, Revised Selected Pa-
pers. Ed. by Sylvain Duquesne and Svetla Petkova-Nikova. Vol. 10064. Lecture Notes in
Computer Science. 2016, pp. 3–17. DOI: 10.1007/978-3-319-55227-9_1. URL: https:
//doi.org/10.1007/978-3-319-55227-9_1.

[28] Stephanie Bayer and Jens Groth. “Efficient Zero-Knowledge Argument for Correctness
of a Shuffle”. In: Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Ed. by David
Pointcheval and Thomas Johansson. Vol. 7237. Lecture Notes in Computer Science. Springer,
2012, pp. 263–280.

[29] Stephanie Bayer and Jens Groth. “Zero-Knowledge Argument for Polynomial Evaluation
with Application to Blacklists”. In: Advances in Cryptology - EUROCRYPT 2013, 32nd An-
nual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Athens, Greece, May 26-30, 2013. Proceedings. Ed. by Thomas Johansson and Phong
Q. Nguyen. Vol. 7881. Lecture Notes in Computer Science. Springer, 2013, pp. 646–663.
DOI: 10.1007/978-3-642-38348-9_38. URL: https://doi.org/10.1007/978-3-
642-38348-9_38.

[30] Donald Beaver. “Adaptive Zero Knowledge and Computational Equivocation (Extended
Abstract)”. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory
of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. Ed. by Gary L. Miller.
ACM, 1996, pp. 629–638. DOI: 10.1145/237814.238014. URL: https://doi.org/10.
1145/237814.238014.

[31] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. “Public-Key Encryption in a Multi-
user Setting: Security Proofs and Improvements”. In: May 2000, pp. 259–274. ISBN: 978-
3-540-67517-4. DOI: 10.1007/3-540-45539-6_18.

[32] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols”. In: CCS ’93, Proceedings of the 1st ACM Conference on Com-
puter and Communications Security, Fairfax, Virginia, USA, November 3-5, 1993. Ed. by
Dorothy E. Denning et al. ACM, 1993, pp. 62–73. DOI: 10.1145/168588.168596. URL:
https://doi.org/10.1145/168588.168596.

[33] Mihir Bellare and Moti Yung. “Certifying Permutations: Noninteractive Zero-Knowledge
Based on Any Trapdoor Permutation”. In: J. Cryptol. 9.3 (1996), pp. 149–166.

[34] Michael Ben-Or et al. “Everything Provable is Provable in Zero-Knowledge”. In: Advances
in Cryptology - CRYPTO ’88, 8th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 21-25, 1988, Proceedings. Ed. by Shafi Goldwasser. Vol. 403.
Lecture Notes in Computer Science. Springer, 1988, pp. 37–56. DOI: 10.1007/0-387-
34799-2_4. URL: https://doi.org/10.1007/0-387-34799-2_4.

[35] Josh Benaloh. “Ballot Casting Assurance via Voter-Initiated Poll Station Auditing”. In:
Proceedings of the USENIX Workshop on Accurate Electronic Voting Technology. EVT’07.
Boston, MA: USENIX Association, 2007, p. 14.

[36] Josh Benaloh. “Verifiable Secret-Ballot Elections”. PhD thesis. 1987. URL: https://www.
microsoft.com/en- us/research/publication/verifiable- secret- ballot-
elections/.

[37] Josh Benaloh, Philip B Stark, and Vanessa Teague. “VAULT: Verifiable Audits Using Lim-
ited Transparency”. In: E-Vote-ID 2019 (2019), p. 69.

https://doi.org/10.1007/978-3-319-55227-9_1
https://doi.org/10.1007/978-3-319-55227-9_1
https://doi.org/10.1007/978-3-319-55227-9_1
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1145/237814.238014
https://doi.org/10.1145/237814.238014
https://doi.org/10.1145/237814.238014
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/0-387-34799-2_4
https://www.microsoft.com/en-us/research/publication/verifiable-secret-ballot-elections/
https://www.microsoft.com/en-us/research/publication/verifiable-secret-ballot-elections/
https://www.microsoft.com/en-us/research/publication/verifiable-secret-ballot-elections/

Bibliography 233

[38] Josh Benaloh et al. “SOBA: Secrecy-preserving Observable Ballot-level Audit”. In: 2011
Electronic Voting Technology Workshop/Workshop on Trustworthy Elections (EVT/WOTE
11). San Francisco, CA: USENIX Association, Aug. 2011. URL: https://www.usenix.
org/conference/evtwote-11/soba-secrecy-preserving-observable-ballot-
level-audit.

[39] Josh Benaloh et al. “STAR-Vote: A Secure, Transparent, Auditable, and Reliable Voting Sys-
tem”. In: CoRR abs/1211.1904 (2012). arXiv: 1211.1904. URL: http://arxiv.org/abs/
1211.1904.

[40] Josh Cohen Benaloh and Dwight Tuinstra. “Receipt-free secret-ballot elections (extended
abstract)”. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Com-
puting, 23-25 May 1994, Montréal, Québec, Canada. Ed. by Frank Thomson Leighton and
Michael T. Goodrich. ACM, 1994, pp. 544–553. DOI: 10.1145/195058.195407. URL:
https://doi.org/10.1145/195058.195407.

[41] Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa. “CCA-Secure Inner-Product
Functional Encryption from Projective Hash Functions”. In: Public-Key Cryptography -
PKC 2017 - 20th IACR International Conference on Practice and Theory in Public-Key
Cryptography, Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part II. Ed.
by Serge Fehr. Vol. 10175. Lecture Notes in Computer Science. Springer, 2017, pp. 36–66.
DOI: 10.1007/978-3-662-54388-7_2. URL: https://doi.org/10.1007/978-3-
662-54388-7_2.

[42] Fabrice Benhamouda et al. “Implicit Zero-Knowledge Arguments and Applications to the
Malicious Setting”. In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II. Ed. by
Rosario Gennaro and Matthew Robshaw. Vol. 9216. Lecture Notes in Computer Science.
Springer, 2015, pp. 107–129. DOI: 10.1007/978- 3- 662- 48000- 7_6. URL: https:
//doi.org/10.1007/978-3-662-48000-7_6.

[43] David Bernhard, Olivier Pereira, and Bogdan Warinschi. “How Not to Prove Yourself: Pit-
falls of the Fiat-Shamir Heuristic and Applications to Helios”. In: Advances in Cryptol-
ogy - ASIACRYPT 2012 - 18th International Conference on the Theory and Application of
Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceedings.
Ed. by Xiaoyun Wang and Kazue Sako. Vol. 7658. Lecture Notes in Computer Science.
Springer, 2012, pp. 626–643. DOI: 10.1007/978-3-642-34961-4_38. URL: https:
//doi.org/10.1007/978-3-642-34961-4_38.

[44] David Bernhard et al. “Adapting Helios for Provable Ballot Privacy”. In: Computer Se-
curity - ESORICS 2011 - 16th European Symposium on Research in Computer Security,
Leuven, Belgium, September 12-14, 2011. Proceedings. Ed. by Vijay Atluri and Claudia
Díaz. Vol. 6879. Lecture Notes in Computer Science. Springer, 2011, pp. 335–354. DOI:
10.1007/978-3-642-23822-2_19. URL: https://doi.org/10.1007/978-3-642-
23822-2_19.

[45] David Bernhard et al. “Measuring vote privacy, revisited”. In: the ACM Conference on
Computer and Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012.
Ed. by Ting Yu, George Danezis, and Virgil D. Gligor. ACM, 2012, pp. 941–952. DOI: 10.
1145/2382196.2382295. URL: https://doi.org/10.1145/2382196.2382295.

[46] David Bernhard et al. “SoK: A Comprehensive Analysis of Game-Based Ballot Privacy Def-
initions”. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015. IEEE Computer Society, 2015, pp. 499–516. DOI: 10.1109/SP.2015.37.
URL: https://doi.org/10.1109/SP.2015.37.

https://www.usenix.org/conference/evtwote-11/soba-secrecy-preserving-observable-ballot-level-audit
https://www.usenix.org/conference/evtwote-11/soba-secrecy-preserving-observable-ballot-level-audit
https://www.usenix.org/conference/evtwote-11/soba-secrecy-preserving-observable-ballot-level-audit
https://arxiv.org/abs/1211.1904
http://arxiv.org/abs/1211.1904
http://arxiv.org/abs/1211.1904
https://doi.org/10.1145/195058.195407
https://doi.org/10.1145/195058.195407
https://doi.org/10.1007/978-3-662-54388-7_2
https://doi.org/10.1007/978-3-662-54388-7_2
https://doi.org/10.1007/978-3-662-54388-7_2
https://doi.org/10.1007/978-3-662-48000-7_6
https://doi.org/10.1007/978-3-662-48000-7_6
https://doi.org/10.1007/978-3-662-48000-7_6
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-23822-2_19
https://doi.org/10.1007/978-3-642-23822-2_19
https://doi.org/10.1007/978-3-642-23822-2_19
https://doi.org/10.1145/2382196.2382295
https://doi.org/10.1145/2382196.2382295
https://doi.org/10.1145/2382196.2382295
https://doi.org/10.1109/SP.2015.37
https://doi.org/10.1109/SP.2015.37

234 Bibliography

[47] John Bethencourt, Amit Sahai, and Brent Waters. “Ciphertext-Policy Attribute-Based En-
cryption”. In: 2007 IEEE Symposium on Security and Privacy (S&P 2007), 20-23 May 2007,
Oakland, California, USA. IEEE Computer Society, 2007, pp. 321–334. DOI: 10.1109/SP.
2007.11. URL: https://doi.org/10.1109/SP.2007.11.

[48] Olivier Blazy et al. “Batch Groth-Sahai”. In: Applied Cryptography and Network Security,
8th International Conference, ACNS 2010, Beijing, China, June 22-25, 2010. Proceedings.
Ed. by Jianying Zhou and Moti Yung. Vol. 6123. Lecture Notes in Computer Science. 2010,
pp. 218–235. DOI: 10.1007/978-3-642-13708-2_14. URL: https://doi.org/10.
1007/978-3-642-13708-2_14.

[49] Manuel Blum. “Coin Flipping by Telephone”. In: Advances in Cryptology: A Report on
CRYPTO 81. 1981, pp. 11–15. URL: /archive/crypto81/11_blum.pdf.

[50] Florian Böhl et al. “Practical Signatures from Standard Assumptions”. In: Advances in
Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings.
Ed. by Thomas Johansson and Phong Q. Nguyen. Vol. 7881. Lecture Notes in Computer
Science. Springer, 2013, pp. 461–485. DOI: 10.1007/978-3-642-38348-9_28. URL:
https://doi.org/10.1007/978-3-642-38348-9_28.

[51] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group Signatures”. In: Advances
in Cryptology - CRYPTO 2004, 24th Annual International CryptologyConference, Santa
Barbara, California, USA, August 15-19, 2004, Proceedings. Ed. by Matthew K. Franklin.
Vol. 3152. Lecture Notes in Computer Science. Springer, 2004, pp. 41–55. DOI: 10.1007/
978-3-540-28628-8_3. URL: https://doi.org/10.1007/978-3-540-28628-8_3.

[52] Dan Boneh and Matthew K. Franklin. “Efficient Generation of Shared RSA Keys (Extended
Abstract)”. In: Advances in Cryptology - CRYPTO ’97, 17th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings. Ed.
by Burton S. Kaliski Jr. Vol. 1294. Lecture Notes in Computer Science. Springer, 1997,
pp. 425–439. DOI: 10.1007/BFb0052253. URL: https://doi.org/10.1007/BFb0052253.

[53] Dan Boneh and Matthew K. Franklin. “Identity-Based Encryption from the Weil Pairing”.
In: SIAM J. Comput. 32.3 (2003), pp. 586–615. DOI: 10.1137/S0097539701398521. URL:
https://doi.org/10.1137/S0097539701398521.

[54] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. “Evaluating 2-DNF Formulas on Ciphertexts”.
In: Theory of Cryptography, Second Theory of Cryptography Conference, TCC 2005, Cam-
bridge, MA, USA, February 10-12, 2005, Proceedings. Ed. by Joe Kilian. Vol. 3378. Lecture
Notes in Computer Science. Springer, 2005, pp. 325–341. DOI: 10.1007/978-3-540-
30576-7_18. URL: https://doi.org/10.1007/978-3-540-30576-7_18.

[55] Dan Boneh, Amit Sahai, and Brent Waters. “Functional Encryption: Definitions and Chal-
lenges”. In: Theory of Cryptography - 8th Theory of Cryptography Conference, TCC 2011,
Providence, RI, USA, March 28-30, 2011. Proceedings. Ed. by Yuval Ishai. Vol. 6597. Lec-
ture Notes in Computer Science. Springer, 2011, pp. 253–273. DOI: 10.1007/978-3-
642-19571-6_16. URL: https://doi.org/10.1007/978-3-642-19571-6_16.

[56] Dan Boneh and Brent Waters. “Conjunctive, Subset, and Range Queries on Encrypted
Data”. In: Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007,
Amsterdam, The Netherlands, February 21-24, 2007, Proceedings. Ed. by Salil P. Vadhan.
Vol. 4392. Lecture Notes in Computer Science. Springer, 2007, pp. 535–554. DOI: 10 .
1007/978-3-540-70936-7_29. URL: https://doi.org/10.1007/978-3-540-
70936-7_29.

https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-642-13708-2_14
/archive/crypto81/11_blum.pdf
https://doi.org/10.1007/978-3-642-38348-9_28
https://doi.org/10.1007/978-3-642-38348-9_28
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/BFb0052253
https://doi.org/10.1007/BFb0052253
https://doi.org/10.1137/S0097539701398521
https://doi.org/10.1137/S0097539701398521
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-540-70936-7_29

Bibliography 235

[57] Dan Boneh et al. “Chosen-Ciphertext Security from Identity-Based Encryption”. In: SIAM
J. Comput. 36.5 (2007), pp. 1301–1328. DOI: 10.1137/S009753970544713X. URL: https:
//doi.org/10.1137/S009753970544713X.

[58] Dan Boneh et al. “On the Impossibility of Basing Identity Based Encryption on Trapdoor
Permutations”. In: 49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA. IEEE Computer Society, 2008,
pp. 283–292. DOI: 10.1109/FOCS.2008.67. URL: https://doi.org/10.1109/FOCS.
2008.67.

[59] Dan Boneh et al. “Public Key Encryption with Keyword Search”. In: Advances in Cryp-
tology - EUROCRYPT 2004, International Conference on the Theory and Applications of
Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings. Ed. by
Christian Cachin and Jan Camenisch. Vol. 3027. Lecture Notes in Computer Science.
Springer, 2004, pp. 506–522. DOI: 10.1007/978-3-540-24676-3_30. URL: https:
//doi.org/10.1007/978-3-540-24676-3_30.

[60] Dan Boneh et al. “Semantically Secure Order-Revealing Encryption: Multi-input Func-
tional Encryption Without Obfuscation”. In: Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. Ed. by Elisabeth Os-
wald and Marc Fischlin. Vol. 9057. Lecture Notes in Computer Science. Springer, 2015,
pp. 563–594. DOI: 10.1007/978-3-662-46803-6_19. URL: https://doi.org/10.
1007/978-3-662-46803-6_19.

[61] Fabrice Boudot. “Efficient Proofs that a Committed Number Lies in an Interval”. In: Ad-
vances in Cryptology - EUROCRYPT 2000, International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding. Ed.
by Bart Preneel. Vol. 1807. Lecture Notes in Computer Science. Springer, 2000, pp. 431–
444. DOI: 10.1007/3-540-45539-6_31. URL: https://doi.org/10.1007/3-540-
45539-6_31.

[62] Zvika Brakerski, Ilan Komargodski, and Gil Segev. “Multi-input Functional Encryption in
the Private-Key Setting: Stronger Security from Weaker Assumptions”. In: J. Cryptol. 31.2
(2018), pp. 434–520. DOI: 10.1007/s00145-017-9261-0. URL: https://doi.org/10.
1007/s00145-017-9261-0.

[63] Gilles Brassard, David Chaum, and Claude Crépeau. “Minimum Disclosure Proofs of Knowl-
edge”. In: J. Comput. Syst. Sci. 37.2 (1988), pp. 156–189. DOI: 10.1016/0022-0000(88)
90005-0. URL: https://doi.org/10.1016/0022-0000(88)90005-0.

[64] Johannes Buchmann, Stephan Düllmann, and Hugh C. Williams. “On the Complexity
and Efficiency of a New Key Exchange System”. In: Advances in Cryptology - EUROCRYPT
’89, Workshop on the Theory and Application of of Cryptographic Techniques, Houthalen,
Belgium, April 10-13, 1989, Proceedings. Ed. by Jean-Jacques Quisquater and Joos Van-
dewalle. Vol. 434. Lecture Notes in Computer Science. Springer, 1989, pp. 597–616. DOI:
10.1007/3-540-46885-4_57. URL: https://doi.org/10.1007/3-540-46885-
4_57.

[65] Johannes Buchmann and Safuat Hamdy. “A survey on IQ cryptography”. In: Public-Key
Cryptography and Computational Number Theory: Proceedings of the International Con-
ference organized by the Stefan Banach International Mathematical Center Warsaw, Poland,
September 11-15, 2000. Ed. by Kazimierz Alster, Jerzy Urbanowicz, and Hugh C. Williams.
De Gruyter, 2011, pp. 1–16. DOI: doi:10.1515/9783110881035.1. URL: https://doi.
org/10.1515/9783110881035.1.

https://doi.org/10.1137/S009753970544713X
https://doi.org/10.1137/S009753970544713X
https://doi.org/10.1137/S009753970544713X
https://doi.org/10.1109/FOCS.2008.67
https://doi.org/10.1109/FOCS.2008.67
https://doi.org/10.1109/FOCS.2008.67
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1007/s00145-017-9261-0
https://doi.org/10.1007/s00145-017-9261-0
https://doi.org/10.1007/s00145-017-9261-0
https://doi.org/10.1016/0022-0000(88)90005-0
https://doi.org/10.1016/0022-0000(88)90005-0
https://doi.org/10.1016/0022-0000(88)90005-0
https://doi.org/10.1007/3-540-46885-4_57
https://doi.org/10.1007/3-540-46885-4_57
https://doi.org/10.1007/3-540-46885-4_57
https://doi.org/doi:10.1515/9783110881035.1
https://doi.org/10.1515/9783110881035.1
https://doi.org/10.1515/9783110881035.1

236 Bibliography

[66] Johannes Buchmann and Ulrich Vollmer. Binary Quadratic Forms - an Algorithmic Ap-
proach. Vol. 20. Algorithms and computation in mathematics. Springer, 2007. ISBN: 978-
3-540-46367-2.

[67] Johannes Buchmann and Hugh C. Williams. “A Key-Exchange System Based on Imagi-
nary Quadratic Fields”. In: J. Cryptol. 1.2 (1988), pp. 107–118. DOI: 10.1007/BF02351719.
URL: https://doi.org/10.1007/BF02351719.

[68] Jan Camenisch and Markus Stadler. “Proof systems for general statements about dis-
crete logarithms”. In: Technical Report/ETH Zurich, Department of Computer Science 260
(1997).

[69] Ran Canetti, Oded Goldreich, and Shai Halevi. “The Random Oracle Methodology, Revis-
ited (Preliminary Version)”. In: Proceedings of the Thirtieth Annual ACM Symposium on
the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998. Ed. by Jeffrey Scott Vitter.
ACM, 1998, pp. 209–218. DOI: 10.1145/276698.276741. URL: https://doi.org/10.
1145/276698.276741.

[70] Ran Canetti et al. “Fiat-Shamir: From Practice to Theory”. In: Proceedings of the 51st An-
nual ACM SIGACT Symposium on Theory of Computing. STOC 2019. Phoenix, AZ, USA:
Association for Computing Machinery, 2019, 1082–1090. ISBN: 9781450367059. DOI: 10.
1145/3313276.3316380. URL: https://doi.org/10.1145/3313276.3316380.

[71] Angelo De Caro et al. “On the Achievability of Simulation-Based Security for Functional
Encryption”. In: Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II. Ed. by Ran Canetti
and Juan A. Garay. Vol. 8043. Lecture Notes in Computer Science. Springer, 2013, pp. 519–
535. DOI: 10.1007/978-3-642-40084-1_29. URL: https://doi.org/10.1007/978-
3-642-40084-1_29.

[72] Guilhem Castagnos and Fabien Laguillaumie. “Linearly Homomorphic Encryption from
DDH”. In: Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA Con-
ference 2015, San Francisco, CA, USA, April 20-24, 2015. Proceedings. Ed. by Kaisa Ny-
berg. Vol. 9048. Lecture Notes in Computer Science. Springer, 2015, pp. 487–505. DOI:
10.1007/978-3-319-16715-2_26. URL: https://doi.org/10.1007/978-3-319-
16715-2_26.

[73] Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. “Practical Fully Secure Unre-
stricted Inner Product Functional Encryption Modulo p”. In: Advances in Cryptology -
ASIACRYPT 2018 - 24th International Conference on the Theory and Application of Cryp-
tology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceed-
ings, Part II. Ed. by Thomas Peyrin and Steven D. Galbraith. Vol. 11273. Lecture Notes
in Computer Science. Springer, 2018, pp. 733–764. DOI: 10.1007/978-3-030-03329-
3_25. URL: https://doi.org/10.1007/978-3-030-03329-3_25.

[74] Pyrros Chaidos and Geoffroy Couteau. “Efficient Designated-Verifier Non-interactive Zero-
Knowledge Proofs of Knowledge”. In: Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III. Ed. by Jesper Buus
Nielsen and Vincent Rijmen. Vol. 10822. Lecture Notes in Computer Science. Springer,
2018, pp. 193–221. DOI: 10.1007/978-3-319-78372-7_7. URL: https://doi.org/
10.1007/978-3-319-78372-7_7.

[75] Melissa Chase, Chaya Ganesh, and Payman Mohassel. “Efficient Zero-Knowledge Proof
of Algebraic and Non-Algebraic Statements with Applications to Privacy Preserving Cre-
dentials”. In: Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III. Ed.

https://doi.org/10.1007/BF02351719
https://doi.org/10.1007/BF02351719
https://doi.org/10.1145/276698.276741
https://doi.org/10.1145/276698.276741
https://doi.org/10.1145/276698.276741
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1007/978-3-642-40084-1_29
https://doi.org/10.1007/978-3-642-40084-1_29
https://doi.org/10.1007/978-3-642-40084-1_29
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-319-78372-7_7

Bibliography 237

by Matthew Robshaw and Jonathan Katz. Vol. 9816. Lecture Notes in Computer Science.
Springer, 2016, pp. 499–530. DOI: 10.1007/978-3-662-53015-3_18. URL: https:
//doi.org/10.1007/978-3-662-53015-3_18.

[76] David Chaum. “Secret-Ballot Receipts: True Voter-Verifiable Elections”. In: IEEE Secur.
Priv. 2.1 (2004), pp. 38–47. DOI: 10.1109/MSECP.2004.1264852. URL: https://doi.
org/10.1109/MSECP.2004.1264852.

[77] David Chaum and Torben P. Pedersen. “Wallet Databases with Observers”. In: Advances
in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 16-20, 1992, Proceedings. Ed. by Ernest F. Brickell. Vol. 740.
Lecture Notes in Computer Science. Springer, 1992, pp. 89–105. DOI: 10.1007/3-540-
48071-4_7. URL: https://doi.org/10.1007/3-540-48071-4_7.

[78] David Chaum et al. “Scantegrity II: End-to-End Verifiability for Optical Scan Election Sys-
tems using Invisible Ink Confirmation Codes”. In: 2008 USENIX/ACCURATE Electronic
Voting Workshop, EVT 2008, July 28-29, 2008, San Jose, CA, USA, Proceedings. Ed. by David
L. Dill and Tadayoshi Kohno. USENIX Association, 2008. URL: http://www.usenix.org/
events/evt08/tech/full_papers/chaum/chaum.pdf.

[79] Jeremy Clark and Urs Hengartner. “Selections: Internet Voting with Over-the-Shoulder
Coercion-Resistance”. In: Financial Cryptography and Data Security - 15th International
Conference, FC 2011, Gros Islet, St. Lucia, February 28 - March 4, 2011, Revised Selected
Papers. Ed. by George Danezis. Vol. 7035. Lecture Notes in Computer Science. Springer,
2011, pp. 47–61. DOI: 10.1007/978-3-642-27576-0_4. URL: https://doi.org/10.
1007/978-3-642-27576-0_4.

[80] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. “Civitas: Toward a Secure
Voting System”. In: 2008 IEEE Symposium on Security and Privacy (S&P 2008), 18-21 May
2008, Oakland, California, USA. IEEE Computer Society, 2008, pp. 354–368. DOI: 10 .
1109/SP.2008.32. URL: https://doi.org/10.1109/SP.2008.32.

[81] Clifford Cocks. “An identity based encryption scheme based on quadratic residues”. In:
IMA International Conference on Cryptography and Coding. Springer. 2001, pp. 360–363.

[82] U.S. Department of Commerce, National Institute of Standards, and Technology. Secure
Hash Standard - SHS: Federal Information Processing Standards Publication 180-4. North
Charleston, SC, USA: CreateSpace Independent Publishing Platform, 2012. ISBN: 1478178078.

[83] Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. “Belenios: A Simple Private
and Verifiable Electronic Voting System”. In: Foundations of Security, Protocols, and Equa-
tional Reasoning - Essays Dedicated to Catherine A. Meadows. Ed. by Joshua D. Guttman
et al. Vol. 11565. Lecture Notes in Computer Science. Springer, 2019, pp. 214–238. DOI:
10.1007/978-3-030-19052-1_14. URL: https://doi.org/10.1007/978-3-030-
19052-1_14.

[84] Véronique Cortier et al. “Election Verifiability for Helios under Weaker Trust Assump-
tions”. In: Computer Security - ESORICS 2014 - 19th European Symposium on Research
in Computer Security, Wroclaw, Poland, September 7-11, 2014. Proceedings, Part II. Ed. by
Miroslaw Kutylowski and Jaideep Vaidya. Vol. 8713. Lecture Notes in Computer Science.
Springer, 2014, pp. 327–344. DOI: 10.1007/978-3-319-11212-1_19. URL: https:
//doi.org/10.1007/978-3-319-11212-1_19.

[85] Véronique Cortier et al. “SoK: Verifiability Notions for E-Voting Protocols”. In: IEEE Sym-
posium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016. IEEE Com-
puter Society, 2016, pp. 779–798. DOI: 10.1109/SP.2016.52. URL: https://doi.org/
10.1109/SP.2016.52.

https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1109/MSECP.2004.1264852
https://doi.org/10.1109/MSECP.2004.1264852
https://doi.org/10.1109/MSECP.2004.1264852
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
http://www.usenix.org/events/evt08/tech/full_papers/chaum/chaum.pdf
http://www.usenix.org/events/evt08/tech/full_papers/chaum/chaum.pdf
https://doi.org/10.1007/978-3-642-27576-0_4
https://doi.org/10.1007/978-3-642-27576-0_4
https://doi.org/10.1007/978-3-642-27576-0_4
https://doi.org/10.1109/SP.2008.32
https://doi.org/10.1109/SP.2008.32
https://doi.org/10.1109/SP.2008.32
https://doi.org/10.1007/978-3-030-19052-1_14
https://doi.org/10.1007/978-3-030-19052-1_14
https://doi.org/10.1007/978-3-030-19052-1_14
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1109/SP.2016.52
https://doi.org/10.1109/SP.2016.52
https://doi.org/10.1109/SP.2016.52

238 Bibliography

[86] Ronald Cramer and Ivan Damgård. “Linear Zero-Knowledge - A Note on Efficient Zero-
Knowledge Proofs and Arguments”. In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997. Ed. by Frank
Thomson Leighton and Peter W. Shor. ACM, 1997, pp. 436–445. DOI: 10.1145/258533.
258635. URL: https://doi.org/10.1145/258533.258635.

[87] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. “Proofs of Partial Knowledge
and Simplified Design of Witness Hiding Protocols”. In: Advances in Cryptology - CRYPTO
’94, 14th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 21-25, 1994, Proceedings. Ed. by Yvo Desmedt. Vol. 839. Lecture Notes in Com-
puter Science. Springer, 1994, pp. 174–187. DOI: 10.1007/3-540-48658-5_19. URL:
https://doi.org/10.1007/3-540-48658-5_19.

[88] Ivan Damgård. “Commitment Schemes and Zero-Knowledge Protocols”. In: Lectures on
Data Security, Modern Cryptology in Theory and Practice, Summer School, Aarhus, Den-
mark, July 1998. Ed. by Ivan Damgård. Vol. 1561. Lecture Notes in Computer Science.
Springer, 1998, pp. 63–86. DOI: 10.1007/3-540-48969-X_3. URL: https://doi.org/
10.1007/3-540-48969-X_3.

[89] Ivan Damgård. “Efficient Concurrent Zero-Knowledge in the Auxiliary String Model”.
In: Advances in Cryptology - EUROCRYPT 2000, International Conference on the Theory
and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceed-
ing. Ed. by Bart Preneel. Vol. 1807. Lecture Notes in Computer Science. Springer, 2000,
pp. 418–430. DOI: 10.1007/3-540-45539-6_30. URL: https://doi.org/10.1007/3-
540-45539-6_30.

[90] Angelo De Caro and Vincenzo Iovino. “On the power of rewinding simulators in func-
tional encryption”. In: Designs, Codes and Cryptography (2016), pp. 1–27. ISSN: 1573-
7586. DOI: 10.1007/s10623- 016- 0272- x. URL: http://dx.doi.org/10.1007/
s10623-016-0272-x.

[91] Sumit Debnath et al. “Post-Quantum Secure Inner Product Functional Encryption Us-
ing Multivariate Public Key Cryptography”. In: Mediterranean Journal of Mathematics 18
(Oct. 2021). DOI: 10.1007/s00009-021-01841-2.

[92] S. Delaune, S. Kremer, and M. D. Ryan. “Verifying Privacy-type Properties of Electronic
Voting Protocols”. In: Journal of Computer Security 17.4 (2009), pp. 435–487.

[93] Apoorvaa Deshpande and Yael Kalai. “Proofs of Ignorance and Applications to 2-Message
Witness Hiding”. In: IACR Cryptol. ePrint Arch. (2018), p. 896. URL: https://eprint.
iacr.org/2018/896.

[94] W. Diffie and M.E. Hellman. “New Directions in Cryptography”. In: IEEE Transactions on
Information Theory IT-22.6 (1976), pp. 644–654.

[95] Jeremy Epstein. “Weakness in Depth: A Voting Machine’s Demise”. In: IEEE Secur. Priv.
13.3 (2015), pp. 55–58. DOI: 10.1109/MSP.2015.46. URL: https://doi.org/10.1109/
MSP.2015.46.

[96] Alex Escala and Jens Groth. “Fine-Tuning Groth-Sahai Proofs”. In: Public-Key Cryptog-
raphy - PKC 2014 - 17th International Conference on Practice and Theory in Public-Key
Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings. Ed. by Hugo Krawczyk.
Vol. 8383. Lecture Notes in Computer Science. Springer, 2014, pp. 630–649. DOI: 10 .
1007/978-3-642-54631-0_36. URL: https://doi.org/10.1007/978-3-642-
54631-0_36.

https://doi.org/10.1145/258533.258635
https://doi.org/10.1145/258533.258635
https://doi.org/10.1145/258533.258635
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48969-X_3
https://doi.org/10.1007/3-540-48969-X_3
https://doi.org/10.1007/3-540-48969-X_3
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/s10623-016-0272-x
http://dx.doi.org/10.1007/s10623-016-0272-x
http://dx.doi.org/10.1007/s10623-016-0272-x
https://doi.org/10.1007/s00009-021-01841-2
https://eprint.iacr.org/2018/896
https://eprint.iacr.org/2018/896
https://doi.org/10.1109/MSP.2015.46
https://doi.org/10.1109/MSP.2015.46
https://doi.org/10.1109/MSP.2015.46
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36

Bibliography 239

[97] Aleksander Essex, Jeremy Clark, and Urs Hengartner. “Cobra: Toward Concurrent Bal-
lot Authorization for Internet Voting”. In: 2012 Electronic Voting Technology Workshop /
Workshop on Trustworthy Elections, EVT/WOTE ’12, Bellevue, WA, USA, August 6-7, 2012.
Ed. by J. Alex Halderman and Olivier Pereira. USENIX Association, 2012. URL: https:
//www.usenix.org/conference/evtwote12/workshop-program/presentation/
essex.

[98] Ehsan Estaji et al. “Revisiting Practical and Usable Coercion-Resistant Remote E-Voting”.
In: Electronic Voting - 5th International Joint Conference, E-Vote-ID 2020, Bregenz, Aus-
tria, October 6-9, 2020, Proceedings. Ed. by Robert Krimmer et al. Vol. 12455. Lecture
Notes in Computer Science. Springer, 2020, pp. 50–66.

[99] Europarat, ed. Legal, operational and technical standards for e-voting: Recommendation
Rec(2004)11 adopted by the Committee of Ministers of the Council of Europe on 30 Septem-
ber 2004 and explanatory memorandum. eng. Reprinted, January 2008. Recommenda-
tion / Committee of Ministers of the Council of Europe Rec 2004, 11. Strasbourg: Council
of Europe Publ, 2008. ISBN: 9789287156358.

[100] C. Feier, S. Neumann, and M. Volkamer. “Coercion-Resistant Internet Voting in Practice”.
In: 44. Jahrestagung der Gesellschaft für Informatik, Informatik 2014, Big Data - Komplex-
ität meistern, 2014. Ed. by E. Plödereder et al. Vol. P-232. LNI. GI, 2014, pp. 1401–1414.
URL: https://dl.gi.de/20.500.12116/2749.

[101] Uriel Feige, Dror Lapidot, and Adi Shamir. “Multiple Non-Interactive Zero Knowledge
Proofs Based on a Single Random String (Extended Abstract)”. In: 31st Annual Sympo-
sium on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990,
Volume I. IEEE Computer Society, 1990, pp. 308–317.

[102] Uriel Feige and Adi Shamir. “Witness Indistinguishable and Witness Hiding Protocols”.
In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-
17, 1990, Baltimore, Maryland, USA. Ed. by Harriet Ortiz. ACM, 1990, pp. 416–426. DOI:
10.1145/100216.100272. URL: https://doi.org/10.1145/100216.100272.

[103] Ariel J. Feldman, J. Alex Halderman, and Edward W. Felten. “Security Analysis of the
Diebold AccuVote-TS Voting Machine”. In: 2007 USENIX/ACCURATE Electronic Voting
Technology Workshop, EVT’07, Boston, MA, USA, August 6, 2007. Ed. by Ray Martinez
and David A. Wagner. USENIX Association, 2007. URL: https://www.usenix.org/
conference/evt-07/security-analysis-diebold-accuvote-ts-voting-machine.

[104] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to Identification
and Signature Problems”. In: Advances in Cryptology - CRYPTO ’86, Santa Barbara, Cal-
ifornia, USA, 1986, Proceedings. Ed. by Andrew M. Odlyzko. Vol. 263. Lecture Notes in
Computer Science. Springer, 1986, pp. 186–194. DOI: 10.1007/3-540-47721-7_12.
URL: https://doi.org/10.1007/3-540-47721-7_12.

[105] Lance Fortnow. “The Complexity of Perfect Zero-Knowledge”. In: Adv. Comput. Res. 5
(1989), pp. 327–343.

[106] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. “Privacy-Free Gar-
bled Circuits with Applications to Efficient Zero-Knowledge”. In: Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II.
Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057. Lecture Notes in Computer Sci-
ence. Springer, 2015, pp. 191–219. DOI: 10.1007/978-3-662-46803-6_7. URL: https:
//doi.org/10.1007/978-3-662-46803-6_7.

https://www.usenix.org/conference/evtwote12/workshop-program/presentation/essex
https://www.usenix.org/conference/evtwote12/workshop-program/presentation/essex
https://www.usenix.org/conference/evtwote12/workshop-program/presentation/essex
https://dl.gi.de/20.500.12116/2749
https://doi.org/10.1145/100216.100272
https://doi.org/10.1145/100216.100272
https://www.usenix.org/conference/evt-07/security-analysis-diebold-accuvote-ts-voting-machine
https://www.usenix.org/conference/evt-07/security-analysis-diebold-accuvote-ts-voting-machine
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-662-46803-6_7

240 Bibliography

[107] Gerhard Frey and Hans-Georg Rück. “A Remark Concerning m-Divisibility and the Dis-
crete Logarithm in the Divisor Class Group of Curves”. In: Mathematics of Computation
62.206 (1994), pp. 865–874. ISSN: 00255718, 10886842. URL: http://www.jstor.org/
stable/2153546 (visited on 2022-05-31).

[108] Martin Fürer et al. “On Completeness and Soundness in Interactive Proof Systems”. In:
Adv. Comput. Res. 5 (1989), pp. 429–442.

[109] Jun Furukawa and Kazue Sako. “An Efficient Scheme for Proving a Shuffle”. In: Advances
in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings. Ed. by Joe Kilian. Vol. 2139.
Lecture Notes in Computer Science. Springer, 2001, pp. 368–387. DOI: 10.1007/3-540-
44647-8_22. URL: https://doi.org/10.1007/3-540-44647-8_22.

[110] Steven D. Galbraith. “The Weil pairing on elliptic curves over C”. In: IACR Cryptol. ePrint
Arch. (2005), p. 323. URL: http://eprint.iacr.org/2005/323.

[111] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. “Pairings for cryptogra-
phers”. In: Discret. Appl. Math. 156.16 (2008), pp. 3113–3121. DOI: 10.1016/j.dam.
2007.12.010. URL: https://doi.org/10.1016/j.dam.2007.12.010.

[112] Taher El Gamal. “A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms”. In: IEEE Trans. Inf. Theory 31.4 (1985), pp. 469–472. DOI: 10.1109/TIT.
1985.1057074. URL: https://doi.org/10.1109/TIT.1985.1057074.

[113] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. “Strengthening Zero-Knowledge Pro-
tocols Using Signatures”. In: J. Cryptol. 19.2 (2006), pp. 169–209. DOI: 10.1007/s00145-
005-0307-3. URL: https://doi.org/10.1007/s00145-005-0307-3.

[114] Sanjam Garg, Craig Gentry, and Shai Halevi. “Candidate multilinear maps from ideal
lattices”. In: Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer. 2013, pp. 1–17.

[115] Sanjam Garg et al. “Candidate Indistinguishability Obfuscation and Functional Encryp-
tion for all Circuits”. In: 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. IEEE Computer Society, 2013,
pp. 40–49. DOI: 10.1109/FOCS.2013.13. URL: https://doi.org/10.1109/FOCS.
2013.13.

[116] Sanjam Garg et al. “Functional Encryption Without Obfuscation”. In: Theory of Cryptog-
raphy - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,
Proceedings, Part II. Ed. by Eyal Kushilevitz and Tal Malkin. Vol. 9563. Lecture Notes in
Computer Science. Springer, 2016, pp. 480–511. DOI: 10.1007/978- 3- 662- 49099-
0_18. URL: https://doi.org/10.1007/978-3-662-49099-0_18.

[117] Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. “Groth-Sahai Proofs Revisited”.
In: Public Key Cryptography - PKC 2010, 13th International Conference on Practice and
Theory in Public Key Cryptography, Paris, France, May 26-28, 2010. Proceedings. Ed. by
Phong Q. Nguyen and David Pointcheval. Vol. 6056. Lecture Notes in Computer Science.
Springer, 2010, pp. 177–192. DOI: 10.1007/978-3-642-13013-7_11. URL: https:
//doi.org/10.1007/978-3-642-13013-7_11.

[118] Oded Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Vol. 17.
Algorithms and Combinatorics. Springer, 1998. ISBN: 978-3-540-64766-9. DOI: 10.1007/
978-3-662-12521-2. URL: https://doi.org/10.1007/978-3-662-12521-2.

[119] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques. Cam-
bridge University Press, 2001. ISBN: 0-521-79172-3. DOI: 10.1017/CBO9780511546891.
URL: http://www.wisdom.weizmann.ac.il/\%7Eoded/foc-vol1.html.

http://www.jstor.org/stable/2153546
http://www.jstor.org/stable/2153546
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/3-540-44647-8_22
http://eprint.iacr.org/2005/323
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/s00145-005-0307-3
https://doi.org/10.1007/s00145-005-0307-3
https://doi.org/10.1007/s00145-005-0307-3
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-642-13013-7_11
https://doi.org/10.1007/978-3-642-13013-7_11
https://doi.org/10.1007/978-3-642-13013-7_11
https://doi.org/10.1007/978-3-662-12521-2
https://doi.org/10.1007/978-3-662-12521-2
https://doi.org/10.1007/978-3-662-12521-2
https://doi.org/10.1017/CBO9780511546891
http://www.wisdom.weizmann.ac.il/\%7Eoded/foc-vol1.html

Bibliography 241

[120] Oded Goldreich. “Zero-Knowledge twenty years after its invention”. In: Electron. Collo-
quium Comput. Complex. 063 (2002). URL: https://eccc.weizmann.ac.il/eccc-
reports/2002/TR02-063/index.html.

[121] Oded Goldreich and Hugo Krawczyk. “On the composition of zero-knowledge proof sys-
tems”. In: Automata, Languages and Programming. Ed. by Michael S. Paterson. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1990, pp. 268–282. ISBN: 978-3-540-47159-2.

[122] Oded Goldreich, Yishay Mansour, and Michael Sipser. “Interactive proof systems: Provers
that never fail and random selection”. In: 28th Annual Symposium on Foundations of
Computer Science (sfcs 1987). 1987, pp. 449–461. DOI: 10.1109/SFCS.1987.35.

[123] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to play any mental game, or a
completeness theorem for protocols with honest majority”. In: Providing Sound Foun-
dations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali. Ed. by Oded
Goldreich. ACM, 2019, pp. 307–328. DOI: 10.1145/3335741.3335755. URL: https://
doi.org/10.1145/3335741.3335755.

[124] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs that Yield Nothing But their
Validity and a Methodology of Cryptographic Protocol Design (Extended Abstract)”. In:
27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986. IEEE Computer Society, 1986, pp. 174–187. DOI: 10.1109/SFCS.1986.47.
URL: https://doi.org/10.1109/SFCS.1986.47.

[125] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs That Yield Nothing but Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems”. In: J. ACM 38.3
(July 1991), 690–728. ISSN: 0004-5411. DOI: 10.1145/116825.116852. URL: https://
doi.org/10.1145/116825.116852.

[126] Oded Goldreich and Yair Oren. “Definitions and Properties of Zero-Knowledge Proof Sys-
tems”. In: J. Cryptol. 7.1 (1994), pp. 1–32. DOI: 10.1007/BF00195207. URL: https://doi.
org/10.1007/BF00195207.

[127] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryption and How to Play Mental
Poker Keeping Secret All Partial Information”. In: Proceedings of the 14th Annual ACM
Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA. Ed.
by Harry R. Lewis et al. ACM, 1982, pp. 365–377. DOI: 10.1145/800070.802212. URL:
https://doi.org/10.1145/800070.802212.

[128] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge Complexity of In-
teractive Proof Systems”. In: SIAM J. Comput. 18.1 (1989), pp. 186–208. DOI: 10.1137/
0218012. URL: https://doi.org/10.1137/0218012.

[129] Shafi Goldwasser and Michael Sipser. “Private Coins versus Public Coins in Interactive
Proof Systems”. In: Adv. Comput. Res. 5 (1989), pp. 73–90.

[130] Shafi Goldwasser et al. “How to Run Turing Machines on Encrypted Data”. In: Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part II. Ed. by Ran Canetti and Juan A. Garay.
Vol. 8043. Lecture Notes in Computer Science. Springer, 2013, pp. 536–553. DOI: 10 .
1007/978-3-642-40084-1_30. URL: https://doi.org/10.1007/978-3-642-
40084-1_30.

[131] Shafi Goldwasser et al. “Multi-input Functional Encryption”. In: Advances in Cryptology
- EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings.
Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441. Lecture Notes in Computer
Science. Springer, 2014, pp. 578–602. DOI: 10.1007/978-3-642-55220-5_32. URL:
https://doi.org/10.1007/978-3-642-55220-5_32.

https://eccc.weizmann.ac.il/eccc-reports/2002/TR02-063/index.html
https://eccc.weizmann.ac.il/eccc-reports/2002/TR02-063/index.html
https://doi.org/10.1109/SFCS.1987.35
https://doi.org/10.1145/3335741.3335755
https://doi.org/10.1145/3335741.3335755
https://doi.org/10.1145/3335741.3335755
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/BF00195207
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/800070.802212
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-55220-5_32

242 Bibliography

[132] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. “Attribute-based encryption
for circuits”. In: STOC. Ed. by Dan Boneh, Tim Roughgarden, and Joan Feigenbaum. ACM,
2013, pp. 545–554. ISBN: 978-1-4503-2029-0.

[133] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. “Functional Encryption with
Bounded Collusions via Multi-party Computation”. In: Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings. Ed. by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in
Computer Science. Springer, 2012, pp. 162–179. DOI: 10.1007/978- 3- 642- 32009-
5_11. URL: https://doi.org/10.1007/978-3-642-32009-5_11.

[134] Vipul Goyal et al. “Attribute-based encryption for fine-grained access control of encrypted
data”. In: Proceedings of the 13th ACM Conference on Computer and Communications Se-
curity, CCS 2006, Alexandria, VA, USA, October 30 - November 3, 2006. Ed. by Ari Juels,
Rebecca N. Wright, and Sabrina De Capitani di Vimercati. ACM, 2006, pp. 89–98. DOI:
10.1145/1180405.1180418. URL: https://doi.org/10.1145/1180405.1180418.

[135] Vipul Goyal et al. “Bounded Ciphertext Policy Attribute Based Encryption”. In: Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik,
Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of
Programming & Track C: Security and Cryptography Foundations. Ed. by Luca Aceto et
al. Vol. 5126. Lecture Notes in Computer Science. Springer, 2008, pp. 579–591. DOI: 10.
1007/978-3-540-70583-3_47. URL: https://doi.org/10.1007/978-3-540-
70583-3_47.

[136] Panagiotis Grontas et al. “Towards Everlasting Privacy and Efficient Coercion Resistance
in Remote Electronic Voting”. In: Financial Cryptography and Data Security - FC 2018
International Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao, March 2,
2018, Revised Selected Papers. Ed. by Aviv Zohar et al. Vol. 10958. Lecture Notes in Com-
puter Science. Springer, 2018, pp. 210–231. DOI: 10.1007/978-3-662-58820-8_15.
URL: https://doi.org/10.1007/978-3-662-58820-8_15.

[137] Jens Groth. “Efficient Zero-Knowledge Arguments from Two-Tiered Homomorphic Com-
mitments”. In: Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference
on the Theory and Application of Cryptology and Information Security, Seoul, South Ko-
rea, December 4-8, 2011. Proceedings. Ed. by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073.
Lecture Notes in Computer Science. Springer, 2011, pp. 431–448. DOI: 10.1007/978-3-
642-25385-0_23. URL: https://doi.org/10.1007/978-3-642-25385-0_23.

[138] Jens Groth. “Linear Algebra with Sub-linear Zero-Knowledge Arguments”. In: Advances
in Cryptology - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2009. Proceedings. Ed. by Shai Halevi. Vol. 5677. Lecture
Notes in Computer Science. Springer, 2009, pp. 192–208. DOI: 10.1007/978-3-642-
03356-8_12. URL: https://doi.org/10.1007/978-3-642-03356-8_12.

[139] Jens Groth. “Simulation-Sound NIZK Proofs for a Practical Language and Constant Size
Group Signatures”. In: Advances in Cryptology - ASIACRYPT 2006, 12th International Con-
ference on the Theory and Application of Cryptology and Information Security, Shanghai,
China, December 3-7, 2006, Proceedings. Ed. by Xuejia Lai and Kefei Chen. Vol. 4284. Lec-
ture Notes in Computer Science. Springer, 2006, pp. 444–459. DOI: 10.1007/11935230\
_29. URL: https://doi.org/10.1007/11935230_29.

[140] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “New Techniques for Noninteractive Zero-
Knowledge”. In: J. ACM 59.3 (2012), 11:1–11:35. DOI: 10.1145/2220357.2220358. URL:
https://doi.org/10.1145/2220357.2220358.

https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1007/978-3-540-70583-3_47
https://doi.org/10.1007/978-3-540-70583-3_47
https://doi.org/10.1007/978-3-540-70583-3_47
https://doi.org/10.1007/978-3-540-70583-3_47
https://doi.org/10.1007/978-3-662-58820-8_15
https://doi.org/10.1007/978-3-662-58820-8_15
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2220357.2220358

Bibliography 243

[141] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “Non-interactive Zaps and New Techniques
for NIZK”. In: Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings. Ed. by
Cynthia Dwork. Vol. 4117. Lecture Notes in Computer Science. Springer, 2006, pp. 97–
111. DOI: 10.1007/11818175_6. URL: https://doi.org/10.1007/11818175_6.

[142] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “Perfect Non-interactive Zero Knowledge
for NP”. In: Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Rus-
sia, May 28 - June 1, 2006, Proceedings. Ed. by Serge Vaudenay. Vol. 4004. Lecture Notes
in Computer Science. Springer, 2006, pp. 339–358. DOI: 10.1007/11761679_21. URL:
https://doi.org/10.1007/11761679_21.

[143] Jens Groth and Amit Sahai. “Efficient Noninteractive Proof Systems for Bilinear Groups”.
In: SIAM J. Comput. 41.5 (2012), pp. 1193–1232. DOI: 10.1137/080725386. URL: https:
//doi.org/10.1137/080725386.

[144] Rolf Haenni and Oliver Spycher. “Secure Internet Voting on Limited Devices with Anonymized
DSA Public Keys”. In: 2011 Electronic Voting Technology Workshop/Workshop on Trust-
worthy Elections (EVT/WOTE 11). San Francisco, CA: USENIX Association, Aug. 2011. URL:
https://www.usenix.org/conference/evtwote-11/secure-internet-voting-
limited-devices-anonymized-dsa-public-keys.

[145] Thomas Haines and Johannes Müller. “A Novel Proof of Shuffle: Exponentially Secure
Cut-and-Choose”. In: Information Security and Privacy - 26th Australasian Conference,
ACISP 2021, Virtual Event, December 1-3, 2021, Proceedings. Ed. by Joonsang Baek and
Sushmita Ruj. Vol. 13083. Lecture Notes in Computer Science. Springer, 2021, pp. 293–
308. DOI: 10.1007/978-3-030-90567-5_15. URL: https://doi.org/10.1007/978-
3-030-90567-5_15.

[146] Thomas Haines and Johannes Müller. “How not to VoteAgain: Pitfalls of Scalable Coercion-
Resistant E-Voting”. In: IACR Cryptol. ePrint Arch. 2020 (2020), p. 1406. URL: https://
eprint.iacr.org/2020/1406.

[147] Thomas Haines et al. “How Not to Prove Your Election Outcome”. In: 2020 IEEE Sympo-
sium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE,
2020, pp. 644–660. DOI: 10.1109/SP40000.2020.00048. URL: https://doi.org/10.
1109/SP40000.2020.00048.

[148] Iftach Haitner and Omer Reingold. “Statistically-hiding commitment from any one-way
function”. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
San Diego, California, USA, June 11-13, 2007. Ed. by David S. Johnson and Uriel Feige.
ACM, 2007, pp. 1–10. DOI: 10.1145/1250790.1250792. URL: https://doi.org/10.
1145/1250790.1250792.

[149] Iftach Haitner, Alon Rosen, and Ronen Shaltiel. “On the (Im)Possibility of Arthur-Merlin
Witness Hiding Protocols”. In: Theory of Cryptography, 6th Theory of Cryptography Con-
ference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings. Ed. by Omer
Reingold. Vol. 5444. Lecture Notes in Computer Science. Springer, 2009, pp. 220–237. DOI:
10.1007/978-3-642-00457-5_14. URL: https://doi.org/10.1007/978-3-642-
00457-5_14.

[150] Ramzi A. Haraty, Hadi Otrok, and Abdul Nasser El-Kassar. “A Comparative Study of El-
gamal Based Cryptographic Algorithms”. In: ICEIS 2004, Proceedings of the 6th Interna-
tional Conference on Enterprise Information Systems, Porto, Portugal, April 14-17, 2004.
2004, pp. 79–84.

https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1137/080725386
https://doi.org/10.1137/080725386
https://doi.org/10.1137/080725386
https://www.usenix.org/conference/evtwote-11/secure-internet-voting-limited-devices-anonymized-dsa-public-keys
https://www.usenix.org/conference/evtwote-11/secure-internet-voting-limited-devices-anonymized-dsa-public-keys
https://doi.org/10.1007/978-3-030-90567-5_15
https://doi.org/10.1007/978-3-030-90567-5_15
https://doi.org/10.1007/978-3-030-90567-5_15
https://eprint.iacr.org/2020/1406
https://eprint.iacr.org/2020/1406
https://doi.org/10.1109/SP40000.2020.00048
https://doi.org/10.1109/SP40000.2020.00048
https://doi.org/10.1109/SP40000.2020.00048
https://doi.org/10.1145/1250790.1250792
https://doi.org/10.1145/1250790.1250792
https://doi.org/10.1145/1250790.1250792
https://doi.org/10.1007/978-3-642-00457-5_14
https://doi.org/10.1007/978-3-642-00457-5_14
https://doi.org/10.1007/978-3-642-00457-5_14

244 Bibliography

[151] Johan Håstad et al. “A Pseudorandom Generator from any One-way Function”. In: SIAM
J. Comput. 28.4 (1999), pp. 1364–1396. DOI: 10.1137/S0097539793244708. URL: https:
//doi.org/10.1137/S0097539793244708.

[152] Carmit Hazay et al. “Efficient RSA Key Generation and Threshold Paillier in the Two-Party
Setting”. In: Topics in Cryptology - CT-RSA 2012 - The Cryptographers’ Track at the RSA
Conference 2012, San Francisco, CA, USA, February 27 - March 2, 2012. Proceedings. Ed. by
Orr Dunkelman. Vol. 7178. Lecture Notes in Computer Science. Springer, 2012, pp. 313–
331. DOI: 10.1007/978-3-642-27954-6_20. URL: https://doi.org/10.1007/978-
3-642-27954-6_20.

[153] Kai He et al. “Generic Anonymous Identity-Based Broadcast Encryption with Chosen-
Ciphertext Security”. In: Information Security and Privacy - 21st Australasian Conference,
ACISP 2016, Melbourne, VIC, Australia, July 4-6, 2016, Proceedings, Part II. Ed. by Joseph
K. Liu and Ron Steinfeld. Vol. 9723. Lecture Notes in Computer Science. Springer, 2016,
pp. 207–222. DOI: 10.1007/978-3-319-40367-0_13. URL: https://doi.org/10.
1007/978-3-319-40367-0_13.

[154] Sven Heiberg et al. “Improving the Verifiability of the Estonian Internet Voting Scheme”.
In: Electronic Voting - First International Joint Conference, E-Vote-ID 2016, Bregenz, Aus-
tria, October 18-21, 2016, Proceedings. Ed. by Robert Krimmer et al. Vol. 10141. Lecture
Notes in Computer Science. Springer, 2016, pp. 92–107. DOI: 10.1007/978- 3- 319-
52240-1_6. URL: https://doi.org/10.1007/978-3-319-52240-1_6.

[155] Javier Herranz, Fabien Laguillaumie, and Carla Ràfols. “Constant Size Ciphertexts in Thresh-
old Attribute-Based Encryption”. In: Public Key Cryptography - PKC 2010, 13th Interna-
tional Conference on Practice and Theory in Public Key Cryptography, Paris, France, May
26-28, 2010. Proceedings. Ed. by Phong Q. Nguyen and David Pointcheval. Vol. 6056. Lec-
ture Notes in Computer Science. Springer, 2010, pp. 19–34. DOI: 10.1007/978-3-642-
13013-7_2. URL: https://doi.org/10.1007/978-3-642-13013-7_2.

[156] Detlef Hühnlein et al. “A Cryptosystem Based on Non-maximal Imaginary Quadratic Or-
ders with Fast Decryption”. In: Advances in Cryptology - EUROCRYPT ’98, International
Conference on the Theory and Application of Cryptographic Techniques, Espoo, Finland,
May 31 - June 4, 1998, Proceeding. Ed. by Kaisa Nyberg. Vol. 1403. Lecture Notes in Com-
puter Science. Springer, 1998, pp. 294–307. DOI: 10.1007/BFb0054134. URL: https:
//doi.org/10.1007/BFb0054134.

[157] Donald E. Eastlake III and Paul E. Jones. “US Secure Hash Algorithm 1 (SHA1)”. In: RFC
3174 (2001), pp. 1–22. DOI: 10.17487/RFC3174. URL: https://doi.org/10.17487/
RFC3174.

[158] Russell Impagliazzo and Moti Yung. “Direct Minimum-Knowledge Computations”. In: A
Conference on the Theory and Applications of Cryptographic Techniques on Advances in
Cryptology. CRYPTO ’87. Berlin, Heidelberg: Springer-Verlag, 1987, 40–51. ISBN: 3540187960.

[159] Vincenzo Iovino and Karol Żebrowski. “Simulation-Based Secure Functional Encryption
in the Random Oracle Model”. In: Progress in Cryptology - LATINCRYPT 2015 - 4th Inter-
national Conference on Cryptology and Information Security in Latin America, Guadala-
jara, Mexico, August 23-26, 2015, Proceedings. 2015, pp. 21–39.

[160] Vincenzo Iovino et al. “Using Selene to Verify Your Vote in JCJ”. In: Financial Cryptog-
raphy and Data Security - FC 2017 International Workshops, WAHC, BITCOIN, VOTING,
WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Papers. Ed. by Michael Bren-
ner et al. Vol. 10323. Lecture Notes in Computer Science. Springer, 2017, pp. 385–403.
DOI: 10.1007/978-3-319-70278-0_24. URL: https://doi.org/10.1007/978-3-
319-70278-0_24.

https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/978-3-319-40367-0_13
https://doi.org/10.1007/978-3-319-40367-0_13
https://doi.org/10.1007/978-3-319-40367-0_13
https://doi.org/10.1007/978-3-319-52240-1_6
https://doi.org/10.1007/978-3-319-52240-1_6
https://doi.org/10.1007/978-3-319-52240-1_6
https://doi.org/10.1007/978-3-642-13013-7_2
https://doi.org/10.1007/978-3-642-13013-7_2
https://doi.org/10.1007/978-3-642-13013-7_2
https://doi.org/10.1007/BFb0054134
https://doi.org/10.1007/BFb0054134
https://doi.org/10.1007/BFb0054134
https://doi.org/10.17487/RFC3174
https://doi.org/10.17487/RFC3174
https://doi.org/10.17487/RFC3174
https://doi.org/10.1007/978-3-319-70278-0_24
https://doi.org/10.1007/978-3-319-70278-0_24
https://doi.org/10.1007/978-3-319-70278-0_24

Bibliography 245

[161] Yuval Ishai et al. “Zero-knowledge from secure multiparty computation”. In: Proceedings
of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA,
June 11-13, 2007. Ed. by David S. Johnson and Uriel Feige. ACM, 2007, pp. 21–30. DOI:
10.1145/1250790.1250794. URL: https://doi.org/10.1145/1250790.1250794.

[162] Markus Jakobsson and Ari Juels. “Mix and Match: Secure Function Evaluation via Cipher-
texts”. In: Advances in Cryptology - ASIACRYPT 2000, 6th International Conference on the
Theory and Application of Cryptology and Information Security, Kyoto, Japan, December
3-7, 2000, Proceedings. Ed. by Tatsuaki Okamoto. Vol. 1976. Lecture Notes in Computer
Science. Springer, 2000, pp. 162–177. DOI: 10.1007/3-540-44448-3_13. URL: https:
//doi.org/10.1007/3-540-44448-3_13.

[163] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. “Designated Verifier Proofs and
Their Applications”. In: Advances in Cryptology - EUROCRYPT ’96, International Confer-
ence on the Theory and Application of Cryptographic Techniques, Saragossa, Spain, May
12-16, 1996, Proceeding. Ed. by Ueli M. Maurer. Vol. 1070. Lecture Notes in Computer
Science. Springer, 1996, pp. 143–154. DOI: 10.1007/3-540-68339-9_13. URL: https:
//doi.org/10.1007/3-540-68339-9_13.

[164] Wojciech Jamroga et al. “Risk-Limiting Tallies”. In: CoRR abs/1908.04947 (2019). arXiv:
1908.04947. URL: http://arxiv.org/abs/1908.04947.

[165] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. “Zero-Knowledge Using Gar-
bled Circuits: How To Prove Non-Algebraic Statements Efficiently”. In: IACR Cryptol. ePrint
Arch. (2013), p. 73. URL: http://eprint.iacr.org/2013/073.

[166] Antoine Joux. “A One Round Protocol for Tripartite Diffie-Hellman”. In: Algorithmic Num-
ber Theory, 4th International Symposium, ANTS-IV, Leiden, The Netherlands, July 2-7,
2000, Proceedings. Ed. by Wieb Bosma. Vol. 1838. Lecture Notes in Computer Science.
Springer, 2000, pp. 385–394. DOI: 10.1007/10722028_23. URL: https://doi.org/10.
1007/10722028_23.

[167] Antoine Joux. “A One Round Protocol for Tripartite Diffie-Hellman”. In: J. Cryptol. 17.4
(2004), pp. 263–276. DOI: 10.1007/s00145-004-0312-y. URL: https://doi.org/10.
1007/s00145-004-0312-y.

[168] Ari Juels, Dario Catalano, and Markus Jakobsson. “Coercion-Resistant Electronic Elec-
tions”. In: Towards Trustworthy Elections, New Directions in Electronic Voting. Ed. by David
Chaum et al. Vol. 6000. Lecture Notes in Computer Science. Springer, 2010, pp. 37–63.
ISBN: 978-3-642-12979-7. DOI: 10.1007/978-3-642-12980-3_2. URL: http://dx.doi.
org/10.1007/978-3-642-12980-3_2.

[169] Tim van de Kamp et al. “Two-Client and Multi-client Functional Encryption for Set In-
tersection”. In: Information Security and Privacy - 24th Australasian Conference, ACISP
2019, Christchurch, New Zealand, July 3-5, 2019, Proceedings. Ed. by Julian Jang-Jaccard
and Fuchun Guo. Vol. 11547. Lecture Notes in Computer Science. Springer, 2019, pp. 97–
115. DOI: 10.1007/978-3-030-21548-4_6. URL: https://doi.org/10.1007/978-
3-030-21548-4_6.

[170] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. “Constant-Size Commitments to
Polynomials and Their Applications”. In: Advances in Cryptology - ASIACRYPT 2010 - 16th
International Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 5-9, 2010. Proceedings. Ed. by Masayuki Abe. Vol. 6477.
Lecture Notes in Computer Science. Springer, 2010, pp. 177–194. DOI: 10.1007/978-
3-642-17373-8_11. URL: https://doi.org/10.1007/978-3-642-17373-8_11.

https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/3-540-68339-9_13
https://arxiv.org/abs/1908.04947
http://arxiv.org/abs/1908.04947
http://eprint.iacr.org/2013/073
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/s00145-004-0312-y
https://doi.org/10.1007/s00145-004-0312-y
https://doi.org/10.1007/s00145-004-0312-y
https://doi.org/10.1007/978-3-642-12980-3_2
http://dx.doi.org/10.1007/978-3-642-12980-3_2
http://dx.doi.org/10.1007/978-3-642-12980-3_2
https://doi.org/10.1007/978-3-030-21548-4_6
https://doi.org/10.1007/978-3-030-21548-4_6
https://doi.org/10.1007/978-3-030-21548-4_6
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11

246 Bibliography

[171] Shuichi Katsumata and Shota Yamada. “Non-zero Inner Product Encryption Schemes
from Various Assumptions: LWE, DDH and DCR”. In: Public-Key Cryptography - PKC 2019
- 22nd IACR International Conference on Practice and Theory of Public-Key Cryptography,
Beijing, China, April 14-17, 2019, Proceedings, Part II. Ed. by Dongdai Lin and Kazue Sako.
Vol. 11443. Lecture Notes in Computer Science. Springer, 2019, pp. 158–188. DOI: 10.
1007/978-3-030-17259-6_6. URL: https://doi.org/10.1007/978-3-030-
17259-6_6.

[172] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition.
CRC Press, 2014. ISBN: 9781466570269. URL: https://www.crcpress.com/Introduction-
to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269.

[173] Jonathan Katz, Amit Sahai, and Brent Waters. “Predicate Encryption Supporting Disjunc-
tions, Polynomial Equations, and Inner Products”. In: Advances in Cryptology - EURO-
CRYPT 2008, 27th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings. Ed. by Nigel P.
Smart. Vol. 4965. Lecture Notes in Computer Science. Springer, 2008, pp. 146–162. DOI:
10.1007/978-3-540-78967-3_9. URL: https://doi.org/10.1007/978-3-540-
78967-3_9.

[174] Neal Koblitz. “Elliptic Curve Cryptosystems”. In: Mathematics of Computation 48.177
(Jan. 1987), pp. 203–209. ISSN: 0025-5718.

[175] Neal Koblitz. “Elliptic Curve Implementations of Zero-Knowledge Blobs”. In: J. Cryptol.
4.3 (1991), pp. 207–213. DOI: 10.1007/BF00196728. URL: https://doi.org/10.1007/
BF00196728.

[176] Tadayoshi Kohno et al. “Analysis of an Electronic Voting System”. In: 2004 IEEE Sympo-
sium on Security and Privacy (S&P 2004), 9-12 May 2004, Berkeley, CA, USA. IEEE Com-
puter Society, 2004, p. 27. DOI: 10.1109/SECPRI.2004.1301313. URL: https://doi.
org/10.1109/SECPRI.2004.1301313.

[177] Steve Kremer and Mark Ryan. “Analysis of an Electronic Voting Protocol in the Applied Pi
Calculus”. In: Programming Languages and Systems, 14th European Symposium on Pro-
gramming,ESOP 2005, Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings. Ed. by Shmuel
Sagiv. Vol. 3444. Lecture Notes in Computer Science. Springer, 2005, pp. 186–200. DOI:
10.1007/978-3-540-31987-0_14. URL: https://doi.org/10.1007/978-3-540-
31987-0_14.

[178] Caroline Kudla and Kenneth G. Paterson. “Non-interactive Designated Verifier Proofs
and Undeniable Signatures”. In: Cryptography and Coding, 10th IMA International Con-
ference, Cirencester, UK, December 19-21, 2005, Proceedings. Ed. by Nigel P. Smart. Vol. 3796.
Lecture Notes in Computer Science. Springer, 2005, pp. 136–154. DOI: 10.1007/11586821\
_10. URL: https://doi.org/10.1007/11586821_10.

[179] Oksana Kulyk and Stephan Neumann. “Human Factors in Coercion Resistant Internet
Voting - A Review of Existing Solutions and Open Challenges”. In: Electronic Voting - 5th
International Joint Conference, E-Vote-ID 2020. 2020.

[180] Oksana Kulyk, Vanessa Teague, and Melanie Volkamer. “Extending Helios Towards Pri-
vate Eligibility Verifiability”. In: E-Voting and Identity - 5th International Conference, VoteID
2015, Bern, Switzerland, September 2-4, 2015, Proceedings. Ed. by Rolf Haenni, Reto E.
Koenig, and Douglas Wikström. Vol. 9269. Lecture Notes in Computer Science. Springer,
2015, pp. 57–73. DOI: 10.1007/978-3-319-22270-7_4. URL: https://doi.org/10.
1007/978-3-319-22270-7_4.

https://doi.org/10.1007/978-3-030-17259-6_6
https://doi.org/10.1007/978-3-030-17259-6_6
https://doi.org/10.1007/978-3-030-17259-6_6
https://doi.org/10.1007/978-3-030-17259-6_6
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/BF00196728
https://doi.org/10.1007/BF00196728
https://doi.org/10.1007/BF00196728
https://doi.org/10.1109/SECPRI.2004.1301313
https://doi.org/10.1109/SECPRI.2004.1301313
https://doi.org/10.1109/SECPRI.2004.1301313
https://doi.org/10.1007/978-3-540-31987-0_14
https://doi.org/10.1007/978-3-540-31987-0_14
https://doi.org/10.1007/978-3-540-31987-0_14
https://doi.org/10.1007/11586821_10
https://doi.org/10.1007/11586821_10
https://doi.org/10.1007/11586821_10
https://doi.org/10.1007/978-3-319-22270-7_4
https://doi.org/10.1007/978-3-319-22270-7_4
https://doi.org/10.1007/978-3-319-22270-7_4

Bibliography 247

[181] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. “A game-based definition of coercion
resistance and its applications”. In: J. Comput. Secur. 20.6 (2012), pp. 709–764. DOI: 10.
3233/JCS-2012-0444.

[182] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. “Accountability: Definition and Re-
lationship to Verifiability”. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010. 2010, pp. 526–
535.

[183] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. “Verifiability, privacy, and coercion-
resistance: New insights from a case study”. In: 2011 IEEE Symposium on Security and
Privacy. IEEE. 2011, pp. 538–553.

[184] Ralf Küsters et al. “Ordinos: A Verifiable Tally-Hiding E-Voting System”. In: IEEE European
Symposium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020.
IEEE, 2020, pp. 216–235. DOI: 10.1109/EuroSP48549.2020.00022. URL: https://doi.
org/10.1109/EuroSP48549.2020.00022.

[185] Benjamin Kuykendall and Mark Zhandry. “Towards Non-interactive Witness Hiding”. In:
Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA,
November 16-19, 2020, Proceedings, Part I. Ed. by Rafael Pass and Krzysztof Pietrzak.
Vol. 12550. Lecture Notes in Computer Science. Springer, 2020, pp. 627–656. DOI: 10.
1007/978-3-030-64375-1_22. URL: https://doi.org/10.1007/978-3-030-
64375-1_22.

[186] Junzuo Lai et al. “Fully secure key-policy attribute-based encryption with constant-size
ciphertexts and fast decryption”. In: 9th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS ’14, Kyoto, Japan - June 03 - 06, 2014. Ed. by Shiho
Moriai, Trent Jaeger, and Kouichi Sakurai. ACM, 2014, pp. 239–248. DOI: 10.1145/2590296.
2590334. URL: https://doi.org/10.1145/2590296.2590334.

[187] Lucie Langer et al. “A Taxonomy Refining the Security Requirements for Electronic Vot-
ing: Analyzing Helios as a Proof of Concept”. In: ARES 2010, Fifth International Confer-
ence on Availability, Reliability and Security, 15-18 February 2010, Krakow, Poland. IEEE
Computer Society, 2010, pp. 475–480. DOI: 10.1109/ARES.2010.106. URL: https://
doi.org/10.1109/ARES.2010.106.

[188] Leonid A. Levin. “Average Case Complete Problems”. In: SIAM J. Comput. 15.1 (1986),
pp. 285–286. DOI: 10.1137/0215020. URL: https://doi.org/10.1137/0215020.

[189] Allison B. Lewko et al. “Fully Secure Functional Encryption: Attribute-Based Encryption
and (Hierarchical) Inner Product Encryption”. In: Advances in Cryptology - EUROCRYPT
2010, 29th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings. Ed. by
Henri Gilbert. Vol. 6110. Lecture Notes in Computer Science. Springer, 2010, pp. 62–91.
DOI: 10.1007/978-3-642-13190-5_4. URL: https://doi.org/10.1007/978-3-
642-13190-5_4.

[190] Jin Li et al. “Multi-authority ciphertext-policy attribute-based encryption with account-
ability”. In: Proceedings of the 6th ACM Symposium on Information, Computer and Com-
munications Security, ASIACCS 2011, Hong Kong, China, March 22-24, 2011. Ed. by Bruce
S. N. Cheung et al. ACM, 2011, pp. 386–390. DOI: 10.1145/1966913.1966964. URL:
https://doi.org/10.1145/1966913.1966964.

[191] Yehuda Lindell. “How to Simulate It - A Tutorial on the Simulation Proof Technique”. In:
Tutorials on the Foundations of Cryptography. Ed. by Yehuda Lindell. Springer Interna-
tional Publishing, 2017, pp. 277–346. DOI: 10.1007/978-3-319-57048-8_6. URL:
https://doi.org/10.1007/978-3-319-57048-8_6.

https://doi.org/10.3233/JCS-2012-0444
https://doi.org/10.3233/JCS-2012-0444
https://doi.org/10.1109/EuroSP48549.2020.00022
https://doi.org/10.1109/EuroSP48549.2020.00022
https://doi.org/10.1109/EuroSP48549.2020.00022
https://doi.org/10.1007/978-3-030-64375-1_22
https://doi.org/10.1007/978-3-030-64375-1_22
https://doi.org/10.1007/978-3-030-64375-1_22
https://doi.org/10.1007/978-3-030-64375-1_22
https://doi.org/10.1145/2590296.2590334
https://doi.org/10.1145/2590296.2590334
https://doi.org/10.1145/2590296.2590334
https://doi.org/10.1109/ARES.2010.106
https://doi.org/10.1109/ARES.2010.106
https://doi.org/10.1109/ARES.2010.106
https://doi.org/10.1137/0215020
https://doi.org/10.1137/0215020
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1145/1966913.1966964
https://doi.org/10.1145/1966913.1966964
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6

248 Bibliography

[192] H. Lipmaa and T. Toft. “Secure Equality and Greater-Than Tests with Sublinear Online
Complexity”. In: Automata, Languages, and Programming - 40th International Collo-
quium, ICALP 2013, Riga, Latvia, 2013, Proceedings. Ed. by F. Fomin et al. Vol. 7966. Lec-
ture Notes in Computer Science. Springer, 2013, pp. 645–656. DOI: 10.1007/978-3-
642-39212-2_56. URL: https://doi.org/10.1007/978-3-642-39212-2_56.

[193] Helger Lipmaa. “On Diophantine Complexity and Statistical Zero-Knowledge Arguments”.
In: Advances in Cryptology - ASIACRYPT 2003, 9th International Conference on the Theory
and Application of Cryptology and Information Security, Taipei, Taiwan, November 30 -
December 4, 2003, Proceedings. Ed. by Chi-Sung Laih. Vol. 2894. Lecture Notes in Com-
puter Science. Springer, 2003, pp. 398–415. DOI: 10.1007/978-3-540-40061-5_26.
URL: https://doi.org/10.1007/978-3-540-40061-5_26.

[194] Wenbo Liu et al. “Efficient functional encryption for inner product with simulation-based
security”. In: Cybersecur. 4.1 (2021), p. 2. DOI: 10.1186/s42400-020-00067-1. URL:
https://doi.org/10.1186/s42400-020-00067-1.

[195] Zhen Liu et al. “Fully Secure Multi-authority Ciphertext-Policy Attribute-Based Encryp-
tion without Random Oracles”. In: Computer Security - ESORICS 2011 - 16th European
Symposium on Research in Computer Security, Leuven, Belgium, September 12-14, 2011.
Proceedings. Ed. by Vijay Atluri and Claudia Díaz. Vol. 6879. Lecture Notes in Computer
Science. Springer, 2011, pp. 278–297. DOI: 10.1007/978-3-642-23822-2_16. URL:
https://doi.org/10.1007/978-3-642-23822-2_16.

[196] Philipp Locher, Rolf Haenni, and Reto E. Koenig. “Coercion-Resistant Internet Voting
with Everlasting Privacy”. In: Financial Cryptography and Data Security - FC 2016 Inter-
national Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February
26, 2016, Revised Selected Papers. Ed. by Jeremy Clark et al. Vol. 9604. Lecture Notes in
Computer Science. Springer, 2016, pp. 161–175. DOI: 10.1007/978- 3- 662- 53357-
4_11. URL: https://doi.org/10.1007/978-3-662-53357-4_11.

[197] Wouter Lueks, Iñigo Querejeta-Azurmendi, and Carmela Troncoso. “VoteAgain: A Scal-
able Coercion-Resistant Voting System”. In: 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020. Ed. by Srdjan Capkun and Franziska Roesner. USENIX
Association, 2020, pp. 1553–1570. URL: https : / / www . usenix . org / conference /
usenixsecurity20/presentation/lueks.

[198] Carsten Lund et al. “Algebraic Methods for Interactive Proof Systems”. In: J. ACM 39.4
(Oct. 1992), 859–868. ISSN: 0004-5411. DOI: 10.1145/146585.146605. URL: https://
doi.org/10.1145/146585.146605.

[199] Carla Mascia, Massimiliano Sala, and Irene Villa. “A survey on Functional Encryption”.
In: CoRR abs/2106.06306 (2021). arXiv: 2106.06306. URL: https://arxiv.org/abs/
2106.06306.

[200] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 2001. URL: http://www.cacr.math.uwaterloo.ca/hac/.

[201] Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In: Advances in Cryptology
- CRYPTO ’85, Santa Barbara, California, USA, August 18-22, 1985, Proceedings. Ed. by
Hugh C. Williams. Vol. 218. Lecture Notes in Computer Science. Springer, 1985, pp. 417–
426. DOI: 10.1007/3-540-39799-X_31. URL: https://doi.org/10.1007/3-540-
39799-X_31.

[202] Eduardo Morais et al. “A Survey on Zero Knowledge Range Proofs and Applications”. In:
CoRR abs/1907.06381 (2019). arXiv: 1907.06381. URL: http://arxiv.org/abs/1907.
06381.

https://doi.org/10.1007/978-3-642-39212-2_56
https://doi.org/10.1007/978-3-642-39212-2_56
https://doi.org/10.1007/978-3-642-39212-2_56
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1186/s42400-020-00067-1
https://doi.org/10.1186/s42400-020-00067-1
https://doi.org/10.1007/978-3-642-23822-2_16
https://doi.org/10.1007/978-3-642-23822-2_16
https://doi.org/10.1007/978-3-662-53357-4_11
https://doi.org/10.1007/978-3-662-53357-4_11
https://doi.org/10.1007/978-3-662-53357-4_11
https://www.usenix.org/conference/usenixsecurity20/presentation/lueks
https://www.usenix.org/conference/usenixsecurity20/presentation/lueks
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://arxiv.org/abs/2106.06306
https://arxiv.org/abs/2106.06306
https://arxiv.org/abs/2106.06306
http://www.cacr.math.uwaterloo.ca/hac/
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://arxiv.org/abs/1907.06381
http://arxiv.org/abs/1907.06381
http://arxiv.org/abs/1907.06381

Bibliography 249

[203] Moni Naor. “Bit Commitment Using Pseudorandomness”. In: J. Cryptol. 4.2 (1991), pp. 151–
158. DOI: 10.1007/BF00196774. URL: https://doi.org/10.1007/BF00196774.

[204] Moni Naor and Omer Reingold. “On the Construction of Pseudorandom Permutations:
Luby-Rackoff Revisited”. In: J. Cryptol. 12.1 (1999), pp. 29–66. DOI: 10.1007/PL00003817.
URL: https://doi.org/10.1007/PL00003817.

[205] A. Silva Neto et al. “Usability Considerations For Coercion-Resistant Election Systems”.
In: Proceedings of the 17th Brazilian Symposium on Human Factors in Computing Sys-
tems, IHC 2018, Brazil, 2018. Ed. by M. Mota et al. ACM, 2018, 40:1–40:10. ISBN: 978-1-
4503-6601-4. DOI: 10.1145/3274192.3274232. URL: https://doi.org/10.1145/
3274192.3274232.

[206] S. Neumann and M. Volkamer. “Civitas and the Real World: Problems and Solutions from
a Practical Point of View”. In: Seventh International Conference on Availability, Reliabil-
ity and Security, Prague, ARES 2012, Czech Republic, August 20-24, 2012. IEEE Computer
Society, 2012, pp. 180–185. DOI: 10.1109/ARES.2012.75. URL: https://doi.org/10.
1109/ARES.2012.75.

[207] S. Neumann et al. “Towards a practical jcj/civitas implementation”. In: INFORMATIK
2013–Informatik angepasst an Mensch, Organisation und Umwelt (2013).

[208] Stephan Neumann. “Evaluation and improvement of internet voting schemes based on
legally-founded security requirements”. PhD thesis. Darmstadt University of Technology,
Germany, 2016. URL: https://d-nb.info/1105390284.

[209] Minh-Huyen Nguyen, Shien Jin Ong, and Salil P. Vadhan. “Statistical Zero-Knowledge Ar-
guments for NP from Any One-Way Function”. In: 47th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA,
Proceedings. IEEE Computer Society, 2006, pp. 3–14. DOI: 10.1109/FOCS.2006.71. URL:
https://doi.org/10.1109/FOCS.2006.71.

[210] Takashi Nishide and Kouichi Sakurai. “Distributed Paillier Cryptosystem without Trusted
Dealer”. In: Information Security Applications - 11th International Workshop, WISA 2010,
Jeju Island, Korea, August 24-26, 2010, Revised Selected Papers. Ed. by Yongwha Chung
and Moti Yung. Vol. 6513. Lecture Notes in Computer Science. Springer, 2010, pp. 44–60.
DOI: 10.1007/978-3-642-17955-6_4. URL: https://doi.org/10.1007/978-3-
642-17955-6_4.

[211] Tatsuaki Okamoto. “Receipt-Free Electronic Voting Schemes for Large Scale Elections”.
In: Security Protocols, 5th International Workshop, Paris, France, April 7-9, 1997, Pro-
ceedings. Ed. by Bruce Christianson et al. Vol. 1361. Lecture Notes in Computer Science.
Springer, 1997, pp. 25–35. DOI: 10.1007/BFb0028157. URL: https://doi.org/10.
1007/BFb0028157.

[212] Tatsuaki Okamoto and Katsuyuki Takashima. “Adaptively Attribute-Hiding (Hierarchical)
Inner Product Encryption”. In: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
99-A.1 (2016), pp. 92–117. DOI: 10.1587/transfun.E99.A.92. URL: https://doi.org/
10.1587/transfun.E99.A.92.

[213] Tatsuaki Okamoto and Katsuyuki Takashima. “Hierarchical Predicate Encryption for Inner-
Products”. In: Advances in Cryptology - ASIACRYPT 2009, 15th International Conference
on the Theory and Application of Cryptology and Information Security, Tokyo, Japan, De-
cember 6-10, 2009. Proceedings. Ed. by Mitsuru Matsui. Vol. 5912. Lecture Notes in Com-
puter Science. Springer, 2009, pp. 214–231. DOI: 10.1007/978-3-642-10366-7_13.
URL: https://doi.org/10.1007/978-3-642-10366-7_13.

[214] Adam O’Neill. “Definitional Issues in Functional Encryption”. In: IACR Cryptology ePrint
Archive 2010 (2010), p. 556. URL: http://eprint.iacr.org/2010/556.

https://doi.org/10.1007/BF00196774
https://doi.org/10.1007/BF00196774
https://doi.org/10.1007/PL00003817
https://doi.org/10.1007/PL00003817
https://doi.org/10.1145/3274192.3274232
https://doi.org/10.1145/3274192.3274232
https://doi.org/10.1145/3274192.3274232
https://doi.org/10.1109/ARES.2012.75
https://doi.org/10.1109/ARES.2012.75
https://doi.org/10.1109/ARES.2012.75
https://d-nb.info/1105390284
https://doi.org/10.1109/FOCS.2006.71
https://doi.org/10.1109/FOCS.2006.71
https://doi.org/10.1007/978-3-642-17955-6_4
https://doi.org/10.1007/978-3-642-17955-6_4
https://doi.org/10.1007/978-3-642-17955-6_4
https://doi.org/10.1007/BFb0028157
https://doi.org/10.1007/BFb0028157
https://doi.org/10.1007/BFb0028157
https://doi.org/10.1587/transfun.E99.A.92
https://doi.org/10.1587/transfun.E99.A.92
https://doi.org/10.1587/transfun.E99.A.92
https://doi.org/10.1007/978-3-642-10366-7_13
https://doi.org/10.1007/978-3-642-10366-7_13
http://eprint.iacr.org/2010/556

250 Bibliography

[215] R. Ostrovsky and A. Wigderson. “One-way functions are essential for non-trivial zero-
knowledge”. In: [1993] The 2nd Israel Symposium on Theory and Computing Systems.
1993, pp. 3–17. DOI: 10.1109/ISTCS.1993.253489.

[216] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Residuosity Classes”.
In: Advances in Cryptology - EUROCRYPT ’99, International Conference on the Theory and
Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceed-
ing. Ed. by Jacques Stern. Vol. 1592. Lecture Notes in Computer Science. Springer, 1999,
pp. 223–238. DOI: 10.1007/3-540-48910-X_16. URL: https://doi.org/10.1007/3-
540-48910-X_16.

[217] Jong Hwan Park. “Inner-product encryption under standard assumptions”. In: Des. Codes
Cryptography 58.3 (2011), pp. 235–257.

[218] Rafael Pass and Alon Rosen. “Concurrent Non-Malleable Commitments”. In: 46th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October
2005, Pittsburgh, PA, USA, Proceedings. IEEE Computer Society, 2005, pp. 563–572. DOI:
10.1109/SFCS.2005.27. URL: https://doi.org/10.1109/SFCS.2005.27.

[219] Torben P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing”. In: CRYPTO 1991. 1991, pp. 129–140.

[220] Real-World Electronic Voting: Design, Analysis and Deployment. en. URL: https://www.
routledge.com/Real-World-Electronic-Voting-Design-Analysis-and-Deployment/
Hao-Ryan/p/book/9780367658212 (visited on 2022-01-22).

[221] Real-World Electronic Voting: Design, Analysis and Deployment. en. URL: https://www.
routledge.com/Real-World-Electronic-Voting-Design-Analysis-and-Deployment/
Hao-Ryan/p/book/9780367658212 (visited on 2022-01-22).

[222] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems”. In: Commun. ACM 21.2 (1978), 120–126. ISSN: 0001-0782.
DOI: 10.1145/359340.359342. URL: https://doi.org/10.1145/359340.359342.

[223] Peter B. Roenne. “JCJ with Improved Verifiability Guarantees”. In: The International Con-
ference on Electronic Voting E-Vote-ID 2016. 2016.

[224] P. B Rønne et al. “Coercion-Resistant Voting in Linear Time via Fully Homomorphic En-
cryption: Towards a Quantum-Safe Scheme”. In: arXiv preprint arXiv:1901.02560 (2019).

[225] Peter Y A Ryan, Peter B Rønne, and Vincenzo Iovino. “Selene: Voting with transparent
verifiability and coercion-mitigation”. In: International Conference on Financial Cryp-
tography and Data Security. Springer. 2016, pp. 176–192.

[226] Peter Y. A. Ryan et al. “Prêt à voter: a voter-verifiable voting system”. In: IEEE Trans.
Inf. Forensics Secur. 4.4 (2009), pp. 662–673. DOI: 10.1109/TIFS.2009.2033233. URL:
https://doi.org/10.1109/TIFS.2009.2033233.

[227] Peter Y. A. Ryan et al. “Who Was that Masked Voter? The Tally Won’t Tell!” In: Electronic
Voting - 6th International Joint Conference, E-Vote-ID 2021, Virtual Event, October 5-8,
2021, Proceedings. Ed. by Robert Krimmer et al. Vol. 12900. Lecture Notes in Computer
Science. Springer, 2021, pp. 106–123. DOI: 10.1007/978-3-030-86942-7_8. URL:
https://doi.org/10.1007/978-3-030-86942-7_8.

[228] Amit Sahai and Hakan Seyalioglu. “Worry-free encryption: functional encryption with
public keys”. In: Proceedings of the 17th ACM Conference on Computer and Communica-
tions Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010. Ed. by Ehab Al-Shaer,
Angelos D. Keromytis, and Vitaly Shmatikov. ACM, 2010, pp. 463–472. DOI: 10.1145/
1866307.1866359. URL: https://doi.org/10.1145/1866307.1866359.

https://doi.org/10.1109/ISTCS.1993.253489
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1109/SFCS.2005.27
https://doi.org/10.1109/SFCS.2005.27
https://www.routledge.com/Real-World-Electronic-Voting-Design-Analysis-and-Deployment/Hao-Ryan/p/book/9780367658212
https://www.routledge.com/Real-World-Electronic-Voting-Design-Analysis-and-Deployment/Hao-Ryan/p/book/9780367658212
https://www.routledge.com/Real-World-Electronic-Voting-Design-Analysis-and-Deployment/Hao-Ryan/p/book/9780367658212
https://www.routledge.com/Real-World-Electronic-Voting-Design-Analysis-and-Deployment/Hao-Ryan/p/book/9780367658212
https://www.routledge.com/Real-World-Electronic-Voting-Design-Analysis-and-Deployment/Hao-Ryan/p/book/9780367658212
https://www.routledge.com/Real-World-Electronic-Voting-Design-Analysis-and-Deployment/Hao-Ryan/p/book/9780367658212
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1109/TIFS.2009.2033233
https://doi.org/10.1109/TIFS.2009.2033233
https://doi.org/10.1007/978-3-030-86942-7_8
https://doi.org/10.1007/978-3-030-86942-7_8
https://doi.org/10.1145/1866307.1866359
https://doi.org/10.1145/1866307.1866359
https://doi.org/10.1145/1866307.1866359

Bibliography 251

[229] Amit Sahai and Brent Waters. “Fuzzy Identity-Based Encryption”. In: Advances in Cryp-
tology - EUROCRYPT 2005, 24th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings.
Ed. by Ronald Cramer. Vol. 3494. Lecture Notes in Computer Science. Springer, 2005,
pp. 457–473. DOI: 10 . 1007 / 11426639 \ _27. URL: https : / / doi . org / 10 . 1007 /
11426639_27.

[230] Kazue Sako and Joe Kilian. “Receipt-Free Mix-Type Voting Scheme - A Practical Solu-
tion to the Implementation of a Voting Booth”. In: Advances in Cryptology - EUROCRYPT
’95, International Conference on the Theory and Application of Cryptographic Techniques,
Saint-Malo, France, May 21-25, 1995, Proceeding. Ed. by Louis C. Guillou and Jean-Jacques
Quisquater. Vol. 921. Lecture Notes in Computer Science. Springer, 1995, pp. 393–403.
DOI: 10.1007/3-540-49264-X_32. URL: https://doi.org/10.1007/3-540-49264-
X_32.

[231] Edouard Dufour Sans and David Pointcheval. “Unbounded Inner-Product Functional
Encryption with Succinct Keys”. In: Applied Cryptography and Network Security - 17th
International Conference, ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceedings. Ed.
by Robert H. Deng et al. Vol. 11464. Lecture Notes in Computer Science. Springer, 2019,
pp. 426–441. DOI: 10.1007/978-3-030-21568-2_21. URL: https://doi.org/10.
1007/978-3-030-21568-2_21.

[232] Michael Schläpfer et al. “Efficient Vote Authorization in Coercion-Resistant Internet Vot-
ing”. In: E-Voting and Identity - Third International Conference, VoteID 2011, Tallinn, Es-
tonia, September 28-30, 2011, Revised Selected Papers. Ed. by Aggelos Kiayias and Helger
Lipmaa. Vol. 7187. Lecture Notes in Computer Science. Springer, 2011, pp. 71–88. DOI:
10.1007/978-3-642-32747-6_5. URL: https://doi.org/10.1007/978-3-642-
32747-6_5.

[233] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards”. In: J. Cryptol. 4.3
(1991), pp. 161–174. DOI: 10.1007/BF00196725. URL: https://doi.org/10.1007/
BF00196725.

[234] Adi Shamir. “Identity-Based Cryptosystems and Signature Schemes”. In: Advances in Cryp-
tology, Proceedings of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984,
Proceedings. Ed. by G. R. Blakley and David Chaum. Vol. 196. Lecture Notes in Computer
Science. Springer, 1984, pp. 47–53. DOI: 10.1007/3-540-39568-7_5. URL: https:
//doi.org/10.1007/3-540-39568-7_5.

[235] Adi Shamir. “IP=PSPACE”. In: 31st Annual Symposium on Foundations of Computer Sci-
ence, St. Louis, Missouri, USA, October 22-24, 1990, Volume I. IEEE Computer Society,
1990, pp. 11–15. DOI: 10.1109/FSCS.1990.89519. URL: https://doi.org/10.1109/
FSCS.1990.89519.

[236] Adi Shamir and Nicko Van Someren. “Playing ‘hide and seek’with stored keys”. In: Inter-
national conference on financial cryptography. Springer. 1999, pp. 118–124.

[237] Claude E. Shannon. “Communication theory of secrecy systems”. In: Bell Syst. Tech. J.
28.4 (1949), pp. 656–715. DOI: 10.1002/j.1538-7305.1949.tb00928.x. URL: https:
//doi.org/10.1002/j.1538-7305.1949.tb00928.x.

[238] Victor Shoup. “OAEP Reconsidered”. In: J. Cryptol. 15.4 (2002), pp. 223–249. DOI: 10.
1007/s00145-002-0133-9. URL: https://doi.org/10.1007/s00145-002-0133-9.

[239] Joseph H. Silverman. The arithmetic of elliptic curves. Vol. 106. Graduate texts in mathe-
matics. Springer, 1986. ISBN: 978-3-540-96203-8.

https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/978-3-030-21568-2_21
https://doi.org/10.1007/978-3-030-21568-2_21
https://doi.org/10.1007/978-3-030-21568-2_21
https://doi.org/10.1007/978-3-642-32747-6_5
https://doi.org/10.1007/978-3-642-32747-6_5
https://doi.org/10.1007/978-3-642-32747-6_5
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1109/FSCS.1990.89519
https://doi.org/10.1109/FSCS.1990.89519
https://doi.org/10.1109/FSCS.1990.89519
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1007/s00145-002-0133-9
https://doi.org/10.1007/s00145-002-0133-9
https://doi.org/10.1007/s00145-002-0133-9

252 Bibliography

[240] Ben Smyth, Steven Frink, and Michael R. Clarkson. “Computational Election Verifiabil-
ity: Definitions and an Analysis of Helios and JCJ”. In: IACR Cryptol. ePrint Arch. (2015),
p. 233. URL: http://eprint.iacr.org/2015/233.

[241] Ben Smyth, Steven Frink, and Michael R. Clarkson. “Election Verifiability: Cryptographic
Definitions and an Analysis of Helios and JCJ”. In: 2015.

[242] Najmeh Soroush et al. “Verifiable Inner Product Encryption Scheme”. In: Public-Key Cryp-
tography - PKC 2020 - 23rd IACR International Conference on Practice and Theory of Public-
Key Cryptography, Edinburgh, UK, May 4-7, 2020, Proceedings, Part I. Ed. by Aggelos Ki-
ayias et al. Vol. 12110. Lecture Notes in Computer Science. Springer, 2020, pp. 65–94. DOI:
10.1007/978-3-030-45374-9_3. URL: https://doi.org/10.1007/978-3-030-
45374-9_3.

[243] Michael A. Specter, James Koppel, and Daniel J. Weitzner. “The Ballot is Busted Before
the Blockchain: A Security Analysis of Voatz, the First Internet Voting Application Used in
U.S. Federal Elections”. In: 29th USENIX Security Symposium, USENIX Security 2020, Au-
gust 12-14, 2020. Ed. by Srdjan Capkun and Franziska Roesner. USENIX Association, 2020,
pp. 1535–1553. URL: https://www.usenix.org/conference/usenixsecurity20/
presentation/specter.

[244] Drew Springall et al. “Security Analysis of the Estonian Internet Voting System”. In: Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014. Ed. by Gail-Joon Ahn, Moti Yung, and Ninghui
Li. ACM, 2014, pp. 703–715. DOI: 10.1145/2660267.2660315. URL: https://doi.org/
10.1145/2660267.2660315.

[245] O. Spycher, R. Koenig R.and Haenni, and M. Schläpfer. “A new approach towards coercion-
resistant remote e-voting in linear time”. In: International Conference on Financial Cryp-
tography and Data Security. Springer. 2011, pp. 182–189.

[246] Björn Terelius and Douglas Wikström. “Proofs of Restricted Shuffles”. In: Progress in Cryp-
tology - AFRICACRYPT 2010, Third International Conference on Cryptology in Africa. Ed.
by Daniel J. Bernstein and Tanja Lange. Vol. 6055. Lecture Notes in Computer Science.
Springer, 2010, pp. 100–113.

[247] Yiannis Tsiounis and Moti Yung. “On the Security of ElGamal Based Encryption”. In: Pub-
lic Key Cryptography, First International Workshop on Practice and Theory in Public Key
Cryptography, PKC ’98, Pacifico Yokohama, Japan, February 5-6, 1998, Proceedings. Ed. by
Hideki Imai and Yuliang Zheng. Vol. 1431. Lecture Notes in Computer Science. Springer,
1998, pp. 117–134. DOI: 10.1007/BFb0054019. URL: https://doi.org/10.1007/
BFb0054019.

[248] UN Committee on Human Rights. General Comment 25 of the Human Rights Committee.
URL: https://www.ohchr.org/EN/Issues/Pages/HRElections.aspx.

[249] United Nations. Universal Declaration of Human Rights. Dec. 1948.

[250] Salil Pravin Vadhan and Shafi Goldwasser. “A Study of Statistical Zero-Knowledge Proofs”.
AAI0801528. PhD thesis. USA, 1999.

[251] Frederik Vercauteren. “Optimal pairings”. In: IEEE Trans. Inf. Theory 56.1 (2010), pp. 455–
461. DOI: 10.1109/TIT.2009.2034881. URL: https://doi.org/10.1109/TIT.2009.
2034881.

[252] G. S. Vernam. “Cipher Printing Telegraph Systems For Secret Wire and Radio Telegraphic
Communications”. In: Transactions of the American Institute of Electrical Engineers XLV
(), pp. 295–301.

http://eprint.iacr.org/2015/233
https://doi.org/10.1007/978-3-030-45374-9_3
https://doi.org/10.1007/978-3-030-45374-9_3
https://doi.org/10.1007/978-3-030-45374-9_3
https://www.usenix.org/conference/usenixsecurity20/presentation/specter
https://www.usenix.org/conference/usenixsecurity20/presentation/specter
https://doi.org/10.1145/2660267.2660315
https://doi.org/10.1145/2660267.2660315
https://doi.org/10.1145/2660267.2660315
https://doi.org/10.1007/BFb0054019
https://doi.org/10.1007/BFb0054019
https://doi.org/10.1007/BFb0054019
https://www.ohchr.org/EN/Issues/Pages/HRElections.aspx
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/10.1109/TIT.2009.2034881

Bibliography 253

[253] Giuseppe Vitto. Factoring Primes to Factor Moduli: Backdooring and Distributed Gener-
ation of Semiprimes. Cryptology ePrint Archive, Report 2021/1610. https://ia.cr/
2021/1610. 2021.

[254] Melanie Volkamer. Evaluation of Electronic Voting - Requirements and Evaluation Pro-
cedures to Support Responsible Election Authorities. Vol. 30. Lecture Notes in Business
Information Processing. Springer, 2009. ISBN: 978-3-642-01661-5. DOI: 10.1007/978-3-
642-01662-2. URL: https://doi.org/10.1007/978-3-642-01662-2.

[255] Guojun Wang, Qin Liu, and Jie Wu. “Hierarchical attribute-based encryption for fine-
grained access control in cloud storage services”. In: Proceedings of the 17th ACM Confer-
ence on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, Octo-
ber 4-8, 2010. Ed. by Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov. ACM,
2010, pp. 735–737. DOI: 10.1145/1866307.1866414. URL: https://doi.org/10.1145/
1866307.1866414.

[256] Brent Waters. “Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient,
and Provably Secure Realization”. In: Public Key Cryptography - PKC 2011 - 14th Inter-
national Conference on Practice and Theory in Public Key Cryptography, Taormina, Italy,
March 6-9, 2011. Proceedings. Ed. by Dario Catalano et al. Vol. 6571. Lecture Notes in
Computer Science. Springer, 2011, pp. 53–70. DOI: 10.1007/978-3-642-19379-8_4.
URL: https://doi.org/10.1007/978-3-642-19379-8_4.

[257] Brent Waters. “Dual System Encryption: Realizing Fully Secure IBE and HIBE under Sim-
ple Assumptions”. In: Advances in Cryptology - CRYPTO 2009, 29th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings. Ed. by
Shai Halevi. Vol. 5677. Lecture Notes in Computer Science. Springer, 2009, pp. 619–636.
DOI: 10.1007/978-3-642-03356-8_36. URL: https://doi.org/10.1007/978-3-
642-03356-8_36.

[258] André Weil. “Sur les fonctions algébriques à corps de constantes fini”. In: 1979.

[259] Roland Wen and Richard Buckland. “Masked Ballot Voting for Receipt-Free Online Elec-
tions”. In: E-Voting and Identity, Second International Conference, VoteID 2009, Luxem-
bourg, September 7-8, 2009. Proceedings. Ed. by Peter Y. A. Ryan and Berry Schoenmakers.
Vol. 5767. Lecture Notes in Computer Science. Springer, 2009, pp. 18–36. DOI: 10.1007/
978-3-642-04135-8_2. URL: https://doi.org/10.1007/978-3-642-04135-8_2.

[260] S. Wiseman, P. Cairns, and A. Cox. “A taxonomy of number entry error”. In: Proceedings
of the 25th BCS Conference on Human-Computer Interaction. British Computer Society.
2011, pp. 187–196.

[261] Scott Wolchok et al. “Security analysis of India’s electronic voting machines”. In: Proceed-
ings of the 17th ACM Conference on Computer and Communications Security, CCS 2010,
Chicago, Illinois, USA, October 4-8, 2010. Ed. by Ehab Al-Shaer, Angelos D. Keromytis, and
Vitaly Shmatikov. ACM, 2010, pp. 1–14. DOI: 10.1145/1866307.1866309. URL: https:
//doi.org/10.1145/1866307.1866309.

[262] Peng Xu et al. “Anonymous Identity-Based Broadcast Encryption with Constant Decryp-
tion Complexity and Strong Security”. In: Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, AsiaCCS 2016, Xi’an, China, May 30 - June
3, 2016. Ed. by Xiaofeng Chen, XiaoFeng Wang, and Xinyi Huang. ACM, 2016, pp. 223–
233. DOI: 10.1145/2897845.2897853. URL: https://doi.org/10.1145/2897845.
2897853.

https://ia.cr/2021/1610
https://ia.cr/2021/1610
https://doi.org/10.1007/978-3-642-01662-2
https://doi.org/10.1007/978-3-642-01662-2
https://doi.org/10.1007/978-3-642-01662-2
https://doi.org/10.1145/1866307.1866414
https://doi.org/10.1145/1866307.1866414
https://doi.org/10.1145/1866307.1866414
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-04135-8_2
https://doi.org/10.1007/978-3-642-04135-8_2
https://doi.org/10.1007/978-3-642-04135-8_2
https://doi.org/10.1145/1866307.1866309
https://doi.org/10.1145/1866307.1866309
https://doi.org/10.1145/1866307.1866309
https://doi.org/10.1145/2897845.2897853
https://doi.org/10.1145/2897845.2897853
https://doi.org/10.1145/2897845.2897853

254 Bibliography

[263] Jiang Zhang, Zhenfeng Zhang, and Aijun Ge. “Ciphertext policy attribute-based encryp-
tion from lattices”. In: 7th ACM Symposium on Information, Compuer and Communica-
tions Security, ASIACCS ’12, Seoul, Korea, May 2-4, 2012. Ed. by Heung Youl Youm and
Yoojae Won. ACM, 2012, pp. 16–17. DOI: 10 . 1145 / 2414456 . 2414464. URL: https :
//doi.org/10.1145/2414456.2414464.

[264] Shiwei Zhang, Yi Mu, and Guomin Yang. “Achieving IND-CCA Security for Functional En-
cryption for Inner Products”. In: Information Security and Cryptology - 12th International
Conference, Inscrypt 2016, Beijing, China, November 4-6, 2016, Revised Selected Papers.
Ed. by Kefei Chen, Dongdai Lin, and Moti Yung. Vol. 10143. Lecture Notes in Computer
Science. Springer, 2016, pp. 119–139. DOI: 10.1007/978-3-319-54705-3_8. URL:
https://doi.org/10.1007/978-3-319-54705-3_8.

https://doi.org/10.1145/2414456.2414464
https://doi.org/10.1145/2414456.2414464
https://doi.org/10.1145/2414456.2414464
https://doi.org/10.1007/978-3-319-54705-3_8
https://doi.org/10.1007/978-3-319-54705-3_8

255

Appendix

Appendix .A

Proof of Proposition 3

Prposition 3. If the DBDH assumption holds relative to GroupGen, then H1 and H2 are
computationally indistinguishable.

Proof. The simulator B takes as input (g , A = gα,B = gβ,C = g τ, Z
?= e(g , gαβτ)) and in-

teracts with the adversary A impersonating the challenger.

SetUp phase. The adversary A sends two vectors −→x ,−→y to B. The simulator picks

Ω,k, ã,δb ,θb , w1,i , t1,i , f̃b,i , h̃b,i
$←−Z⋆p

for b = 1,2 and i ∈ [n]. Then, for each i ∈ [n], the simulator computes w2,i , t2,i such that:

Ω= δ1w2,i −δ2w1,i = θ1t2,i −θ2t1,i .

B computes the master public key components for b ∈ [2], i ∈ [n] as follows:

{Wb,i = g wb,i ,Fb,i = B xiδb · g f̃b,i ,Tb,i = g tb,i , Hb,i = B xiθb · g h̃b,i }b∈[2],i∈[n]

{Ub = gδb ,Vb = g θb }b∈[2],h = gΩ,Λ= e(A,B)−Ω ·e(A, g)ã ,K1 = Ak , K2 = B
−Ω

k · g
ã
k .

By doing so,B knows all secret parameters except { fb,i ,hb,i }b∈[2],i∈[n] which implicitly are
set fb,i = xiδbβ+ f̃b,i ,hb,i = xiθbβ+ h̃b,i . The following shows the simulator generates
the well-form master public key, with same distribution in both hybrids:

Λ= e(A,B)−Ω ·e(A, g)ã = e(gα, gβ)−Ω ·e(gα, g)ã = e(g , g−αβΩ+αã) ⇒ g ′ = g−αβΩ+αã ,

e(K1,K2) = e(Ak ,B
−Ω

k · g
ã
k) = e(A,B−Ω · g ã) =Λ.

Token query phase. First, notice that in the token query phase, A is allowed to ask the
token for some vectors −→v ∈ Zn

p such that cx = 〈⃗x, v⃗〉 ̸= 0. To generate a token for vector
−→v , the simulator first chooses random elements λ̃1, λ̃2,ri ,Φi

$←− Zp , for i = 1, . . . ,n and
compute the token components as follows:

{K3,i = g−δ2ri · (g λ̃1 · A−1/2cx)vi w2,i ,K4,i = gδ1ri−λ̃1vi w1,i · Avi w1,i /2cx }i∈[n],

{K5,i = g−θ2Φi · (g λ̃2 · A−1/2cx)vi t2,i ,K6,i = g θ1Φi−λ̃2vi t1,i · Avi t1,i /2cx }i∈[n],

KB =
n∏

i=1
g−(ri+Φi),K A =Ψ1 ·Ψ2 · Aã

which:

256 Appendix

Ψ1 = B−λ̃1Ωcx ·
n∏

i=1
Fδ2ri

1,i F−δ1ri
2,i g−λ1vi (f̃1,i w2,i− f̃2,i w1,i)

Ψ2 = B−λ̃2Ωcx ·
n∏

i=1
Hθ2Φi

1,i H−θ1Φi
2,i g−λ2vi (h̃1,i t2,i−h̃2,i t1,i)

Note that g λ̃1 · A−1/2cx = g λ̃1−α/2cx and g λ̃2 · A−1/2cx = g λ̃2−α/2cx , hence by defining λb =
λ̃b −α/(2cx) , for b = 1,2, we see {K j ,i } j=3,4,5,6,i∈[n] has the proper structure. For compo-
nent K A consider the following computation:

f1,i w2,i − f2,i w1,i = (xiδ1β+ f̃1,i)w2,i − (xiδ2β+ f̃2,i)w1,i =
xiβ(δ1w2,i −δ2w1,i)+ f̃1,i w2,i − f̃2,i w1,i =Ωxiβ+ (f̃1,i w2,i − f̃2,i w1,i)

⇒K
− f1,i

3,i K
− f2,i

4,i = g− f1,i (−δ2ri+vi w2,iλ1)− f2,i (δ1ri−vi w1,iλ1) =

= Fδ2ri
1,i F−δ1ri

2,i g
λ1vi

(
− f1,i w2,i+ f2,i w1,i

)
= Fδ2ri

1,i F−δ1ri
2,i g

−λ1vi

(
Ωxiβ+(f̃1,i w2,i− f̃2,i w1,i)

)
= Fδ2ri

1,i F−δ1ri
2,i g−λ1vi (f̃1,i w2,i− f̃2,i w1,i) · g−λ1viΩxiβ

⇒
n∏

i=1
K

− f1,i

3,i K
− f2,i

4,i =
n∏

i=1
Fδ2ri

1,i F−δ1ri
2,i g−λ1vi (f̃1,i w2,i− f̃2,i w1,i) · g−λ1Ωβ

∑n
i=1 vi xi

=
n∏

i=1
Fδ2ri

1,i F−δ1ri
2,i g−λ1vi (f̃1,i w2,i− f̃2,i w1,i) · g−(λ̃1−α/(2cx))Ωβ〈⃗x,v⃗〉

=
(n∏

i=1
Fδ2ri

1,i F−δ1ri
2,i g−λ1vi (f̃1,i w2,i− f̃2,i w1,i)

)
·B−λ̃1Ωcx

︸ ︷︷ ︸
Ψ1

·gΩαβ/2 =Ψ1 · gΩαβ/2

With same computation we conclude
∏n

i=1 K
−h1,i

5,i K
−h2,i

6,i =Ψ2 · gΩαβ/2 hence:

⇒ K A = g ′ ·
n∏

i=1
K

− f1,i

3,i K
− f2,i

4,i K
−h1,i

5,i K
−h2,i

6,i = g ′ ·Ψ1 · gΩαβ/2 ·Ψ2 · gΩαβ/2

=Ψ1 ·Ψ2 · g−αβΩ+αã · gαβΩ =Ψ1 ·Ψ2 · gαã =Ψ1 ·Ψ2 · Aã

Challenge phase. The simulator chooses random elements

s1, s̃2, s̃3, s̃4, s′1, s̃′2, s̃′3
$←−Z⋆p : s̃3 ̸= s̃′3

and implicitly define the new randomnesses:

s2 = τ+ s̃2, s2 = τ+ s̃′2, s3 =−βτ+ s̃3, s3 =−βτ+ s̃′3, s4 =−βτ+ s̃4

The challenge ciphertext is computed as follows (for i ∈ [n])

ct1 =C s̃2 = g τs̃2 ,ct′1 =C s̃′2 = g τs̃′2 ,ct2 = hs1 ,ct′2 = hs′1

ct3,i = g s1w̃1,i · g s̃2 f̃1,i ·B δ̃1xi s̃2 ·C f̃1,i · g δ̃1xi s̃3 , ct′3,i = g s′1w̃1,i ·C s̃′2 f̃1,i ·B δ̃1xi s̃′3

ct4,i = g s1w̃2,i ·C s̃2 f̃2,i ·B δ̃2xi s̃3 ,ct′4,i = g s′1w̃2,i ·C s̃′2 f̃2,i ·B δ̃2xi s̃′3

ct5,i = g s1 t̃1,i ·C s̃2h̃1,i Z θ̃1xi ,ct′5,i = g s′1 t̃1,i ·C s̃′2h̃1,i Z θ̃1xi

ct6,i = g s1 t̃2,i ·C s̃2h̃2,i Z θ̃2xi ,ct′6,i = g s′1 t̃2,i ·C s̃′2h̃2,i Z θ̃2xi

Appendix .A 257

ct8 = Z Ω̃ ·e(A,C)−ã ·Λ−s̃2 ·m0,ct′8 = Z Ω̃ ·e(A,C)−ã ·Λ−s̃′2 ·m0

ct3,i =W s1
1,i ·F s2

1,i ·δ
xi s3
1 = g s1w1,i · g f1,i (s̃2+γ) · g xiδ1(−γβ+s̃3) = g s1w1,i · g f1,i s̃2 gγ(f1,i−xiδ1β) · g xiδ1 s̃3)

=W s1
1,i · g s̃2(βδ̃1xi+ f̃1,i) · gγ(f1,i−xi δ̃1β) · g δ̃1xi s̃3 =W s1

1,i ·B s̃2δ1xi · g s̃2 f̃1,i ·C f̃1,i · gδ1xi s̃3

Same computation shows other components generated properly.

Analyzing the game: There exists two cases Z = e(g , g)αβτ or it is a random element in
Zp . Also note,

Λ−s2 =Λ−τ−s̃2 = (e(A,B)−Ω ·e(A, g)ã)−τ ·Λ−s̃2 = e(h, g)αβτ ·e(A,C)−ã ·Λ−s̃2 ,

ct8 = ZΩ ·e(A,C)−ã ·Λ−s̃2 ·m0 = ZΩ ·Λ−s2 ·e(h, g)−αβτ ·m0 = ZΩe(h, g−αβτ) ·Λ−s2 ·m0

1. If Z = e(g , g)αβτ⇒ ZΩ ·e(h, g−αβτ) = e(h, gαβτ) ·e(h, g−αβτ) = 1GT ct8 =Λ−s2 ·m0 ⇒
A interacts with H1

2. If Z is a random element then ct8 is also a random element hence A interact with
H2

Proof of Proposition 7

Proposition 7. Under DLin assumption H2 and H3 are indistinguishable for all PPT ad-
versaries.

Proof. The simulator takes as input:

(g , A = gα,B = gβ,C = g τ,D = gαη, Z
?= gβ(η+τ))

and by interacting with the adversary A, distinguish between gβ(η+τ) and a random
element.

SetUp phase. The adversary A sends two vectors −→x ,−→y to B. The simulator picks g ′ $←−G
and δb ,θb , w̃1,i , t̃1,i , fb,i , h̃b,i ,Ω̃,r

$←−Z⋆p for b = 1,2 and i ∈ [n]. Then, for each i ∈ [n], the
simulator computes w2,i , t2,i such that:

Ω̃= δ1w̃2,i −δ2w̃1,i = θ1 t̃2,i −θ2 t̃1,i .

B computes the master public key components for b ∈ [2], i ∈ [n] as follows:

{Wb,i = Bδb xi Aw̃b,i ,Fb,i = g fb,i ,Tb,i = Bθb xi A t̃b,i , Hb,i = Bθb xi g h̃b,i }b∈[2],i∈[n]

{Ub = gδb ,Vb = g θb }b∈[2], ,h = AΩ̃,Λ= e(g , g ′),K1 = g k , K2 = g ′ 1
k .

The simulator knows exact value of { fb,i ,δb ,θb}i∈[n],b∈[2] and for the rest implicitly define
the secret parameters as follows:

wb,i =βδb xi +αw̃b,i , tb,i =βθb xi +αt̃b,i ,hb,i =βθb xi + h̃b,i ,Ω=αΩ̃

258 Appendix

Observe that:

δ1w2,i −δ2w1,i = δ1(����βδ2xi +αw̃2,i)−δ2(����βδ1xi +αw̃1,i)

=α(w̃2,iδ1 −δ2w̃1,i)

=α(t̃2,iθ1 −θ2 t̃1,i)

= θ1t2,i −θ2t1,i

=αΩ̃
=Ω

Thus, the simulator generates the master public key as the real setup algorithm.

Token query phase. The simulator chooses λ̃1, λ̃2, {r̃i ,Φ̃i }i∈[n]
$←−Z⋆p , and then implicitly

defines the following randomnesses:

λ1 =− λ̃2

α
+ λ̃1,λ2 = λ̃2

α
,ri =−βvi xi λ̃2

α
+ r̃i ,Φi = βvi xi λ̃2

α
+ Φ̃iα

By that setting the simulator generates the token as:

logg K3,i =−δ2ri +λ1vi w2,i =−δ2(−βvi xi λ̃2

α
+ r̃i)+ (− λ̃2

α
+ λ̃1)vi w2,i =

vi λ̃2

α
(xiδ2β−w2,i︸ ︷︷ ︸

−αw̃2,i

)−δ2r̃i + λ̃1vi w2,i =−vi λ̃2w̃2,i −δ2r̃i + λ̃1vi w2,i

⇒ K3,i = g−δ2ri · gλ1vi w2,i = g−δ2 r̃i · g−λ̃2vi w̃2,i ·W λ̃1vi
2,i ⇒ K3,i is computable

logg K5,i =−θ2Φi +λ2vi t2,i =−θ2(
βvi xi λ̃2

α
+ Φ̃i)+ (

λ̃2

α
)vi t2,i

=−vi λ̃2

α
(θ2βxi − t2,i︸ ︷︷ ︸

−αt̃2,i

)−θ2Φ̃i = vi λ̃2 t̃2,i −θ2Φ̃i

⇒ K5,i =g−θ2Φi · gλ2vi t2,i = g−θ2Φ̃i · g vi λ̃2 t̃2,i ⇒ K5,i is computable.

Same computation:K4,i = gδ1 r̃i · g λ̃1vi w̃1,i ·W −λ̃1vi
1,i ,K6,i = g θ1Φ̃i g−λ̃2vi t̃1,i

KB =
n∏

i=1
g−(ri+Φi) =

n∏
i=1

g−(−βvi xi λ̃2
α +r̃i+βvi xi λ̃2

α +Φ̃i) =
n∏

i=1
g−(r̃i+Φ̃i)

To compute K A notice that the simulator knows fb,i hence
∏n

i=1 K
− f1,i

3,i K
− f2,i

4,i is com-

putable. For the remaining part K
−h1,i

5,i K
−h2,i

6,i , consider the following:

K
−h1,i

5,i K
−h2,i

6,i = g h1,iθ2Φ̃i g−h1,i λ̃2vi t̃2,i g−h2,iθ1Φ̃i g h2,i λ̃2vi t̃1,i

= Hθ2Φ̃i
1,i ·H

−λ̃2vi t̃2,i

1,i H−θ1Φ̃i
2,i ·H

λ̃2vi t̃1,i

2,i ⇒ K
−h1,i

5,i K
−h2,i

6,i is computable

This shows that the simulator can compute the token as the real challenger.

Appendix .A 259

Challenge Phase: To generate the ciphertext, B chooses random elements

s̃1, . . . , s̃3, s̃′1, . . . , s̃′3
$←−Z⋆p : s̃3 ̸= s̃′3

and computes the challenge ciphertext as follows:

•ct1 =C · g s̃2 = g τ+s̃2 ⇒ s2 = τ+ s̃2,

•ct′1 =C · g s̃′2 = g τ+s̃′2 ⇒ s′2 = τ+ s̃2

•ct2 = DΩ̃ · AΩ̃s̃1 = (gαΩ̃)(η+s̃1) = hη+s̃1 ⇒ s1 = η+ s̃1

•ct′2 = DΩ̃ · AΩ̃s̃′1 ⇒ s′1 = η+ s̃′1
•ct3,i =W s̃1

1,i ·F s̃2
1,i ·U

s̃3xi
1 ·D w̃1,i ·C f1,i =W s̃1

1,i ·F s̃2+τ
1,i ·U s̃3xi

1 · gηαw̃1,i ·F τ
1,i =

=W s̃1
1,i ·F s̃2+τ

1,i ·U s̃3xi
1 · gη(w1,i−βδ1xi) =W s̃1+η

1,i ·F s̃2+τ
1,i ·U (s̃3−ηβ)xi

1 ⇒ s3 =−ηβ+ s̃3

•ct4,i =W s̃1
2,i ·F s̃2

2,i ·U
s̃3xi
2 ·D w̃2,i ·C f2,i , (similar computation as ct3,i)

and,

•ct′3,i =W
s̃′1

1,i ·F
s̃′2
1,i ·U

s̃′3xi

1 ·D w̃1,i ·C f1,i

•ct′4,i =W
s̃′1

2,i ·F
s̃′2
2,i ·U

s̃′3xi

2 ·D w̃2,i ·C f2,i

•ct5,i = T s̃1
1,i ·D t̃1,i ·H s̃2

1,i ·C h̃1,i ·Z θ1xi ,

•ct′5,i = T
s̃′1
1,i ·D t̃1,i ·H

s̃′2
1,i ·C h̃1,i ·Z kθ1xi

•ct6,i = T s̃1
2,i ·D t̃2,i ·H s̃2

2,i ·C h̃2,i ·Z θ2xi ,

•ct′6,i = T
s̃′1
2,i ·D t̃2,i ·H

s̃′2
2,i ·C h̃2,i ·Z θ2xi

Analysis the game: First, notice that:

D t̃1,i = gηαt̃1,i = gη(t1,i−βθ1 yi) = T η

1,i · g−βηθ1 yi ,D t̃1,i = T η

1,i · g−kβηθ1 yi

C h̃1,i = g τ(h1,i−βθ1 yi) = Hτ
1,i · g−βτθ1 yi ,C h̃1,i = Hτ

1,i · g−βτθ1 yi

⇒
ct5,i = T s̃1

1,i ·D t̃1,i ·H s̃2
1,i ·C h̃1,i ·Z θ1 yi =

= T s̃1
1,i ·T η

1,i · g−βηθ1 yi ·H s̃2
1,i ·Hτ

1,i · g−βτθ1 yi ·Z θ1 y⃗i

= T η+s̃1

1,i ·Hτ+s̃2
1,i · (g−β(τ+η) ·Z)θ1 yi = T s1

1,i ·H s2
1,i · (g−β(τ+η) ·Z)θ1 yi

ct′5,i = T
s′1
1,i ·H

s′2
1,i · (g−β(τ+η) ·Z)θ1 yi

If Z = gβ(η+τ) ⇒
g−β(τ+η) ·Z = 1G⇒ ct5,i = T s1

1,i ·H s2
1,i

g (−β(τ+η) ·Z = 1G⇒ ct5,i = T
s′1
1,i ·H

s′2
1,i

⇒ The adversary interact with hybrid H3

260 Appendix

If Z = g r ⇒
g−β(τ+η) ·Z = g r−β(τ+η) s4=r−β(τ+η)−−−−−−−−−→ ct5,i = T s1

1,i ·H s2
1,i ·U

s4 yi
1

g (−β(τ+η) ·Z = g r ′ ⇒ ct5,i = T
s′1
1,i ·H

s′2
1,i ·U

r ′yi
1

⇒ The adversary interact with hybrid H2

Proof of Proposition 8

Proposition 8. Under DLin assumption H3 and H4 are indistinguishable for all PPT ad-
versaries A.

Proof. The simulator takes as input (g , A = gα,B = gβ,C = g τ,D = gαη, Z
?= gβ(η+τ)) and

by interacting with the adversary A, distinguish between gβ(η+τ) and a random element.

SetUp phase. Generating master public key is same as in 7, except that instead of −→x =
(x1, . . . , xn) we use −→y = (y1, . . . , yn) to compute {Tb,i , Hb,i }i∈[n]:

{Wb,i = Bδb xi Aw̃b,i ,Fb,i = g fb,i ,Tb,i = Bθb yi A t̃b,i , Hb,i = Bθb yi g h̃b,i }b∈[2],i∈[n]

{Ub = gδb ,Vb = g θb }b∈[2], ,h = AΩ̃,Λ= e(g , g ′),K1 = g k , K2 = g ′ 1
k .

Which means the simulator implicitly defines:

wb,i =βδb xi +αw̃b,i , tb,i =βθb yi +αt̃b,i ,hb,i =βθb yi + h̃b,i ,Ω=αΩ̃

Proving that the simulator generates the master public key, with the distribution same
as a real challenger is same as 7.

Token query phase. The simulator chooses λ̃1, λ̃2, {r̃i ,Φ̃i }i∈[n]
$←−Z⋆p , and then implicitly

defines the following randomnesses:

λ1 = λ̃1 −
cy λ̃2

α
, λ2 = cx λ̃2

α
, ri = r̃i −

cyβvi xi λ̃2

α
, Φi = Φ̃i + cxβvi yi λ̃2

α

The following computation shows the simulator can compute the token without know-
ing the exact value of the randomnesses:

logg K3,i =−δ2ri +λ1vi w2,i =−δ2(r̃i −
cyβvi xi λ̃2

α
)+ (λ̃1 −

cy λ̃2

α
)vi w2,i

=−δ2r̃i +
cy λ̃2

α
vi (βxi −w2,i︸ ︷︷ ︸

αw̃2,i

)+ λ̃1vi w2,i =−δ2r̃i + cy λ̃2vi w̃2,i + λ̃1vi w2,i =

⇒ K3,i = g−δ2 r̃i · g cy λ̃2vi w̃2,i ·W λ̃1vi
2,i ⇒ K3,i is compuatble

logg K5,i =−θ2Φi +λ2vi t2,i =−θ2(Φ̃i + cxβvi yi λ̃2

α
)+ cx λ̃2

α
vi t2,i =−θ2Φ̃i + cx vi λ̃2

α
(t2,i −θ2βyi︸ ︷︷ ︸

αt̃2,i

) =

⇒ K5,i = g−θ2Φ̃i · g cx λ̃2vi t̃2,i ⇒ K5,i is compuatble

Similar computation ⇒ K4,i = gδ1 r̃i · g−cy λ̃2vi w̃1,i ·W −λ̃1vi
1,i ,K6,i = g θ1Φ̃i · g−cx λ̃2vi t̃1,i

Appendix .B 261

K A = g ′ ·
n∏

i=1
K

− f1,i

3,i K
− f2,i

4,i K
−h1,i

5,i K
−h2,i

6,i = g ′ ·
n∏

i=1
K

− f1,i

3,i K
− f2,i

4,i K
−βθ1 yi−h̃1,i

5,i K
−βθ2 yi+h̃2,i

6,i

= g ′ ·
n∏

i=1
K

− f1,i

3,i K
− f2,i

4,i K
−h̃1,i

5,i K
−h̃2,i

6,i (����g−θ2Φi gλ2vi t2,i)−βθ1 yi (����g−θ1Φi gλ2vi t1,i)−βθ2 yi

= g ′ ·
n∏

i=1
K

− f1,i

3,i K
− f2,i

4,i K
−h̃1,i

5,i K
−h̃2,i

6,i g−λ2viβyi (t2,iθ1−t1,iθ2)

= g ′ ·
n∏

i=1
K

− f1,i

3,i K
− f2,i

4,i K
−h̃1,i

5,i K
−h̃2,i

6,i B−λ̃2vi yi Ω̃⇒ K A is computable

KB =
n∏

i=1
g−(ri+Φi) =

n∏
i=1

g−r̃i+ cy λ̃2vi xi β
α −Φ̃i− cx λ̃2vi yi β

α =
n∏

i=1
g−(r̃i+Φ̃i)+ cy λ̃2β

α (cy vi xi−cx vi yi) =

= g−∑n
i=1(r̃i+Φ̃i)g

λ̃2β
α (cx

∑n
i=1 vi yi−cy

∑n
i=1 vi xi) =

n∏
i=1

g−(r̃i+Φ̃i) · g
λ̃2β
α (cy cx−cx cy) =

n∏
i=1

g−(r̃i+Φ̃i)

This shows that the simulator can compute the token as the real challenger.

Generating the challenge ciphertext. Simulator does the exact steps as in 7 to generate
the challenge ciphertext for all components except ct5,i ,ct6,i ,ct′5,i ,ct′6,i , which instead
{xi }i puts {yi }i as power of Z :

ct5,i = T s̃1
1,i ·D t̃1,i ·H s̃2

1,i ·C h̃1,i ·Z θ1 yi ct6,i = T s̃1
2,i ·D t̃2,i ·H s̃2

2,i ·C h̃2,i ·Z θ2 yi

ct′5,i = T
s̃′1
1,i ·D t̃1,i ·H

s̃′2
1,i ·C h̃1,i ·Z θ1 yi ct′6,i = T

s̃′1
2,i ·D t̃2,i ·H

s̃′2
2,i ·C h̃2,i ·Z θ2 yi

Analysis the game:

• If Z = gβ(η+τ) ⇒ ct5,i = T s1
1,i H s2

1,i Z−θ1 yi Z θ1 yi = T s1
1,i H s2

1,i ⇒A interacts with hybrid H3

• If Z = g r ⇒ ct5,i = T s1
1,i H s2

1,i · g−β(η+τ)θ1 yi · g θ1 yi r = T s1
1,i H s2

1,i · g (r−β(η+τ))θ1 yi

s4=r−β(η+τ)̸=0−−−−−−−−−−−→ ct5,i = T s1
1,i H s3

1,i V s4 yi
1 which is hybrid H4

Appendix .B

Groth-Sahai Pairing product Equation for BGN relation

Using the Groth-Sahai proof technique we have the following equation for the relation
Rballot defined in 7.17:

Variables:

M= g vote,Mi = g votei
,X = g crd,Ai = g âi

,CAi =CAi ,

M̂= hrv ,M̂i = hri ,X̂ = hrcrd ,Âi = hr′i , ˆCAi = hr∗i

262 Appendix

Equation

e(CTvote, g) = e(g vote ·hrv , g) = e(M, g) ·e(M̂, g)

e(CTcrd, g) = e(g crd ·hrcrd , g) = e(X , g) ·e(X̂ , g)

for i = 1, . . . ,k :

e(CAi , g) = e(g âi ·hr′i , g) = e(Ai , g) ·e(Âi , g)

e(CAi , g) = e(g âi
, g) = e(g âi−1

, g â) = e(Ai−1,A1)

e(CA∗
i , g) = e(CAi ·hr∗i , g) = e(CAi , g) ·e(ˆCAi , g)

e(Mk , g2) ·e(Mk−1, g2)p1 · . . . ·e(M1, g2)pk−1 ·e(g1, g2)pk = 1GT

for i = 1,2, . . . ,m :

e(Mi , g) ·e(Mi−1,M)−1 = 1GT

(4)

Notice that to prove the validity of the encrypted vote, vote ∈ cList= {c1, . . . ,cm} the voter
is required to prove:

CTvote =Enc(vote),vote ∈ cList
Or equivalently prove that:

CTvote =Enc(vote) :PolyC (vote) = 0

Where the polynomial PolyC is defined as follows:

PolyC =
m∏

i=1
(x −ci) =

m∑
i=0

ci xi

	Introduction
	Modern Cryptography
	The Dawn of the Public Key Encryption Scheme

	Towards Advanced Cryptography
	Zero-Knowledge Proof Systems
	Fine Grained Access to Information
	Inner Product Encryption Scheme

	Verifiability in the Context of Functional Encryption
	Verifiable Secure E-Voting Protocols
	Privacy in the context of E-Voting
	Verifiability in the Context of E-Voting

	Contributions and Outline of Thesis
	Perfect Inner Product Encryption Scheme
	Revisiting Practical and Usable Coercion-Resistant E-Voting
	Deniable Vote Updating
	Risk-Limiting Tallies
	Outline

	I Verifiable Functional Encryption Schemes
	Building Blocks; Verifiable Functional Encryption Schemes
	Mathematical Notions and Notations
	Algorithms
	A Background from Complexity Theory
	P, NP and PSPACE
	Interactive Proof Systems

	Provable Security
	Computational Secrecy
	Simulation-Based Security
	Game-Based Security

	One Way Functions
	Computational Assumptions
	Factorization-Based Assumptions
	Discrete Logarithm-Based Assumptions

	Cryptographic Primitives
	Commitment Scheme
	Public Key Encryption Schemes
	Hash Functions
	Signature Schemes

	A Brief Survey on Zero-Knowledge Proof Systems
	Zero-Knowledge proof Systems
	Zero-Knowledge Proof System for NP-language
	Zero-Knowledge Proof Systems; Variants
	Simulator with Auxiliary Input
	Perfect, Statistical, Computational ZK
	Expected Polynomial-Time Simulators
	Knowledge Tightness
	Arguments; Computationally Sound ZK

	Proof of Knowledge
	Sigma Protocol
	Composing Zero-Knowledge Proof Systems
	Sequential Composition
	Parallel Composition

	Witness Indistinguishable and Witness Hiding Proof System
	Witness Indistinguishability
	Witness Hiding

	Non-Interactive Zero Knowledge Proof Systems
	NIZK in RHB Model
	NIZK in CRS Model
	NIZK for NP-Language
	Fiat-Shamir Heuristic
	Designated Verifier Zero-Knowledge Proof Systems
	Non-Algebraic Language; Rang-Proof and Proof of Shuffle

	Non-Interactive Witness Indistinguishable Proof Systems
	NIWI; Formal Definitions

	Groth Sahai NIWI proof System
	Groth-Sahai Technique; Overview
	Formal Description
	Groth-Sahai NIWI Proofs
	Set Up

	Instantiation Based on the DLin Assumption
	OR Statements

	Perfect Inner Product Encryption Schemes
	Functional Encryption Scheme
	Introduction

	Functional Encryption; Formal Definition
	Security Notions in the Context of FE

	Sub Classes of Functional Encryption Scheme
	Identity-Based Encryption Scheme
	Predicate Encryption Scheme
	Attribute-Based Encryption Scheme
	Hidden Vector Encryption Scheme

	Inner Product Encryption Scheme
	IPE; Variants

	Technical Overview
	Verification Algorithms
	Achieving Perfect Correctness
	IPE; Formal Definition
	Security Notion for IPE

	Perfectly Correct IPE
	Perfect Correctness Property

	Security Proof

	Verifiable IPE
	Introduction and Research Question
	Motivating Applications
	Perfectly Binding Polynomial Commitments

	Verifiability in the Context of Functional Encryption
	Security Notion of VFE

	VIP Relations
	Our Verifiable Inner Product Encryption Scheme
	NIWI Proofs and Verification Algorithms
	Master Public Key Verification
	Token Verification Algorithm
	NIWI-Proof for Encryption Algorithm

	Conclusion

	II Verifiable Secure E-Voting Protocols
	Building Blocks; Verifiable E-Voting Protocols
	Introduction
	Protocol Participants and Procedures
	Security Notions in the Context of E-Voting Protocols

	Formal Definitions
	Computational Model
	Coercion-Resistance
	Privacy
	Receipt-Freeness

	Verifiability in the Context of E-Voting Protocol
	Verifiability; Formal Definition

	Simulation-Based Security in E-Voting Protocol
	bPRIV Property
	Strong Consistency
	Strong Correctness

	Practical and Usable Coercion-Resistant Remote E-Voting
	Research Question and Our Contribution
	Introduction
	A Brief Overview of NV12
	Pin-Based JCJ E-Voting Protocol
	The Intuition Behind the PIN

	Protocol Description; Participants, Primitives and Framework
	Protocol Participants
	Cryptographic Primitives
	Protocol Framework
	Protocol Instantiations

	Instantiation with Paillier Cryptosystem
	Instantiation with BGN cryptosystem
	Instantiation with Functional Encryption Scheme
	Security Analysis
	Security Model
	Privacy Proof
	Strong Consistency Property
	Strong Correctness Property
	Verifiability

	Conclusion

	A New Technique for Deniable Vote Updating
	Introduction
	Related work
	Our Contributions

	Overview of DeVoS
	Main Idea

	Protocol Description; Participants, Primitives and Framework
	Protocol Participants
	Cryptographic Primitives
	Protocol Framework

	Protocol Instantiation
	Instantiation with Bilinear Groups
	Instantiation with Exponential ElGamal

	DeVoS; Security Properties
	Security Model
	Privacy
	Intuitive Counter-Strategy
	Coercion Threat Model
	Verifiability

	Risk-Limiting Tallies
	Introduction
	Masking Complex Ballots
	Partially Masked RLTs and RLVs
	Selene
	RLTs and Verification with Partially Masked Ballots

	Distinguishing Distance
	Quantitative Privacy-Type Properties
	Privacy
	Coercion-Resistance and No Deniability
	Receipt-Freeness

	Conclusion

	Bibliography
	Appendix
	Appendix .A
	Proof of Proposition 3
	Proof of Proposition 7
	Proof of Proposition 8

	Appendix .B
	Groth-Sahai Pairing product Equation for BGN relation

